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Material Decomposition Using Ensemble Learning
for Energy-Resolved Computed Tomography

Yanye Lu*, Markus Kowarschik, Qiushi Ren, Rebecca Fahrig, Joachim Hornegger and Andreas Maier

Abstract—Material decomposition facilitates the differentiation
of different materials in X-ray imaging. As an alternative to
the previous empirical material decomposition methods, we per-
formed material decomposition using ensemble learning methods
in this work. Three representative ensemble methods with two
decision trees as the base learning algorithms were implemented
to perform material decomposition in both simulation study and
experimental study. The results were quantitatively evaluated
for comparison study. The performance of the base learning
algorithms was improved by using appropriate ensemble meth-
ods. The results indicate that it is feasible and promising to
perform material decomposition using ensemble learning, which
is valuable to be further investigated.

Index Terms—Material decomposition, machine learning, en-
semble learning, energy-resolved computed tomography (CT).

I. INTRODUCTION

Energy-resolved computed tomography (CT) has been de-
veloped to facilitate detecting spectral information from the
energy-dependent attenuation properties of objects, poten-
tially increasing the measuring accuracy of the objects. Such
technology can be implemented using either energy-resolved
detectors with one polychromatic X-ray spectrum or various
X-ray spectra with conventional detectors. Nowadays energy-
resolved CT attracts more and more research interests, not
only because it facilitates quantitative measurements, but also
due to its advantage of allowing material decomposition.
Material decomposition, which has great potential in medical
applications, can decompose the materials that have the same
range of attenuation gray values in conventional CT images
by analyzing the different attenuation behaviors across various
energy bins.

Material decomposition in energy-resolved CT can be per-
formed either before CT reconstruction in projection domain
or after CT reconstructions in image domain. A traditional
way to perform material decomposition is so called the basis
material decomposition (BMD) method [1], which is actually
based on the mixture rule. The BMD method proposes that
X-ray attenuation coefficients can be represented as the su-
perposition of basis functions, relying on explicitly modeling
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the energy-resolved imaging system. However, it is difficult
to measure polychromatic spectrum information, which limits
the accuracy of material composition. The spectral infor-
mation of projections is typically affected by the spectral
distortions caused by X-ray detectors. Furthermore, energy-
resolved detection introduces more bias such as noise to the
projections. Therefore, empirical calibrations such as spectral
weighting or spectrum calibration are employed to get the
attenuation behavior of the basis material to facilitate the BMD
method. Nevertheless, deriving an explicit transmission model
in realistic scans is still challenging due to the nonlinearity
and nonparametric models. In addition, the approximation is
generally vulnerable to the nonlinearity of the measure system.
As an alternative, supervised machine learning can be utilized
to model the relationship between spectral measurements and
the relevant measurement system. Several related works have
been reported in the literature [2][3]. Moreover, we also
proposed a learning-based material decomposition pipeline
[4][5], which employs machine learning algorithms to generate
the material-specific models for material decomposition tasks.
The machine learning algorithms are crucial to the pipeline,
largely conditioning the success of the material decomposition
endeavor.

Ensemble learning with decision trees has been demon-
strated great potential in modeling relationship between input
observations and output values [6]. Based on the previous
studies, the aim of this work is to make an effort to investigate
the feasibility and performance of using ensemble learning
for material decomposition. Three representative ensemble
methods with two decision trees as the base learning algo-
rithms were investigated using the learning-based material
decomposition pipeline to perform material decomposition in
both simulation study and experimental study. The results were
quantitatively evaluated to compare to a BMD-based method
for comparison study.

II. METHODS

A. Material Decomposition Model Estimation

The aim of material decomposition task is to build material-
specific decomposition models to decompose the effective
material-specific projection p̂j from the energy-resolved ob-
servations q1, · · · , qB . For this goal, a target function of the
material decomposition model is defined as follow:

p̂j = D(q), (1)

where D(q) is an as-yet-unknown general function estimator
to model the material decomposition approach with the obser-

The 14th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

111



2

vations q = (q1, . . . , qB). A hypothesis model H(x) is defined
to approximate D(q), where x are vectors that numerically
represent the observations q. The model constructions rely
on various machine learning algorithms, where the hypothesis

model H(x) is optimized to find the optimal choice
∗

H(x)
that minimizes the expected value of a loss function L on the
training samples:

∗
H(x) = arg min

H(x)

1

m

m∑
i=1

L(ŷ,y(i)). (2)

Once the optimal hypothesis model
∗

H(x) was determined, we
can obtain an estimated material decomposition model ˆD(q).

B. Leaning-Based Material Decomposition Pipeline

In this work, a learning-based material decomposition
pipeline was employed to build material-specific decomposi-
tion models for material decomposition tasks. We need the
instance-label pairs that consist of energy-resolved projections
and their relevant material-specific projections respectively
for generating material-specific decomposition models in the
learning phase. First the instance-label pairs are split into
two categories of training set and test set, then these datasets
are processed by a feature extractor to yield feature vectors.
These feature vectors from the training sets are applied by
machine learning algorithms to learn decomposition models
for recognizing the input unit with target output unit. Once the
models have been learned, the performance is evaluated by the
accuracy of the model on predicting outcome on the test set.
In the material decomposition phase, the input energy-resolved
projections also need to be processed by the same feature
extractor with same parameters that used in the learning phase.

In order to extract information from the spectral mea-
surements, a raw-pixel-value feature extractor was built to
extract feature information from energy-resolved projections,
extracting the pixel values per-pixel from each energy bin
of the input energy-resolved projections to yield the feature
vectors. The total number of the features is the number of
energy bins, and the total number of the instances is the pixel
amount of the input projections.

C. Ensemble Learning with Decision Trees

In contrast to ordinary leaning methods that employ one
learner, ensemble learning methods train multiple learners
and combine them to learn models. In this work, we inves-
tigated three representative ensemble methods of Boosting
[7], Bagging [8] and Stacking [9]. The Boosting combines
base learners in an iterative way, gradient descent with the
shrinkage rate of 0.3 was involved to minimize the residual
error for optimizing the performance. The Bagging employs
base learning algorithms in parallel using bootstrap sampling,
then combines them by averaging their outputs, the iteration
was set to 20. The Stacking trains a group of base learners
as the first-level learner, whose outputs are regarded as input
features of a second-level learner, for which a multi-response
linear regression [10] was employed. Random Tree [11] and

Figure 1. Example images showing the simulation scenarios (top row) and
the real scan scenarios (bottom row). The right images are the corresponding
material decomposition objects in this study.

REPTree [12] were used as the base learning algorithms in
this work. Both set 1 as the minimum number of instances
per leaf, 0.001 as the minimum variance proportion of train
variance for split, as well as the maximum depth of the tree
was set to be unlimited.

D. Experimental Setup

In simulation study, we generated a virtue CT system to
simulate the geometry of a research Artis zeego C-arm angiog-
raphy system (Siemens Healthineers, Forchheim, Germany).
The peak voltage was set to 90 kV and the time current product
to 2.5 mAs. A flat panel photon-counting energy-resolved de-
tector of 620×480 pixels with a pixel size of 0.4×0.4 mm was
simulated for detecting three energy bins (10-40 keV, 40-70
keV and 70-100 keV) with a cross-talk of 3 keV. The source-
to-patient distance was 750 mm while the source-to-detector
distance was 1200 mm. 200-degree short scans with an angular
increment of 1.5-degree were performed to acquire the energy-
resolved projections of a modified XCAT phantom using an
append buffer based rendering procedure [13]. The energy-
dependent X-ray absorption coefficients were obtained from
the NIST [14] database. The field of view (FOV) was centered
around the heart to focus on the costal arch and the coronary
arteries that were filled with Ultravist370. The ground truth of
the material decomposition object was simulated as material-
specific projections as well. Both noiseless projections and
noisy projections with Poisson noise were created respectively.
Furthermore, we applied a joint bilateral filter (JBF) [15] as
the pre-processing of noise reduction to the noisy data to yield
the JBF-denoised data.

In experimental study, we scanned an anthropomorphic
torso phantom (Sawbones Europe AB, Malmo, Sweden) con-
taining a SAWBONES spine with a biopsy needle inserted at
different peak voltage setting of 40 kVp (0.9 mAs), 70 kVp
(0.8 mAs), and 125 kVp (0.2mAs) using an angiography CT
system [16]. The flat panel detector was operated with 4x4
binning that allows an effective resolution of 620×480 pixels
with a pixel size of 0.616×0.616 mm. The source-to-isocenter
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Scenario Noise Level
Reference Method Base Learner Boosting Bagging Stacking

R±SD SSIM±SD R±SD SSIM±SD R±SD SSIM±SD R±SD SSIM±SD R±SD SSIM±SD

Short Scan

Noisy 0.46±0.12 0.36±0.19 0.31±0.13 0.30±0.13 0.32±0.13 0.30±0.13 0.44±0.15 0.39±0.15 0.31±0.13 0.28±0.12

JBF-Denoised 0.73±0.13 0.42±0.15 0.71±0.09 0.65±0.10 0.74±0.08 0.69±0.10 0.82±0.07 0.72±0.10 0.73±0.08 0.61±0.08

Noiseless 0.85±0.05 0.61±0.14 0.83±0.06 0.79±0.09 0.86±0.06 0.83±0.08 0.91±0.04 0.86±0.08 0.85±0.04 0.75±0.04

Torso
Noisy 0.56±0.22 0.35±0.19 0.73±0.08 0.67±0.10 0.78±0.05 0.73±0.09 0.79±0.07 0.75±0.10 0.78±0.08 0.74±0.10

JBF-Denoised 0.58±0.24 0.36±0.20 0.78±0.08 0.72±0.10 0.83±0.05 0.80±0.09 0.84±0.04 0.80±0.08 0.83±0.08 0.80±0.10

(a) Random Tree as base learning algorithm

Scenario Noise Level
Reference Method Base Learner Boosting Bagging Stacking

R±SD SSIM±SD R±SD SSIM±SD R±SD SSIM±SD R±SD SSIM±SD R±SD SSIM±SD

Short Scan

Noisy 0.46±0.12 0.36±0.19 0.47±0.16 0.41±0.15 0.52±0.16 0.44±0.16 0.51±0.14 0.39±0.12 0.48±0.16 0.41±0.15

JBF-Denoised 0.73±0.13 0.42±0.15 0.76±0.10 0.67±0.16 0.83±0.07 0.72±0.12 0.79±0.07 0.57±0.15 0.77±0.08 0.68±0.12

Noiseless 0.85±0.05 0.61±0.14 0.84±0.09 0.80±0.14 0.91±0.05 0.85±0.10 0.86±0.03 0.70±0.04 0.86±0.07 0.82±0.10

Torso
Noisy 0.56±0.22 0.35±0.19 0.80±0.08 0.74±0.10 0.83±0.05 0.78±0.09 0.80±0.07 0.75±0.10 0.79±0.08 0.74±0.10

JBF-Denoised 0.58±0.24 0.36±0.20 0.84±0.08 0.81±0.10 0.88±0.05 0.84±0.10 0.85±0.07 0.81±0.10 0.84±0.08 0.80±0.10

(b) REPTree as base learning algorithm
Table I

MEAN R± STANDARD DEVIATION AND MEAN SSIM ± STANDARD DEVIATION ACROSS ALL QUANTITATIVE MEASUREMENTS OF THE MATERIAL
DECOMPOSITION RESULTS WITH (A) THE RANDOM TREE AND (B) THE REPTREE.

distance was 700 mm while the source-to-detector distance
was 1200 mm. Rotation of 199 degrees short scans with an
average angular increment of 1 degree were performed. In
order to obtain the ground truth projections of the needle,
we performed a fourth scan at 125 kVp (0.2mAs) after
careful removal of the needle. Subtraction of the two 125 kVp
scans yielded a material-specific projections of the needle for
the labeling and the performance evaluation. Similar to the
simulation study, the experimental data was pre-processed by
the JBF as well.

E. Performance Evaluation

The experiments were performed in accordance with the
learning-based material decomposition pipeline. In the learn-
ing phase, the mixed feature vectors that concatenate feature
vectors from different noise levels were used to learn generic
material decomposition models. For each experiment, the
original datasets were split into training set and test set using
the hold-out validation with a sampling interval of 1 (corre-
sponding hold-out rates: 49.62%). The performance of each
method was quantified by the Pearson’s correlation coefficient
(R) and the structural similarity (SSIM) index [17]. The mean
value and standard deviation of the quantitative results from
the test sets were used to evaluate the overall performance of
the material decomposition models. Furthermore, we used a
BMD-based empirical material decomposition estimator with
polynomial fitting [18] as the reference method for comparison
studies. The machine learning algorithms were implemented
by the Waikato Environment for Knowledge Analysis (Weka)
[19], and the other methods were implemented in the Java-
based framework CONRAD [20].

III. RESULTS

Figure 2 and 3 demonstrate the decomposed material-
specific projections of the object materials in the simulation
study and experimental study respectively. The contrast of
the images was enhanced by histogram stretching with 0.3%
saturated pixels in the image and normalized to [0, 1]. It can be
seen that, the performance of the base learning algorithms was
improved using the Boosting and the Bagging, but deteriorated

Figure 2. Decomposed material-specific projections of the coronary arteries
filled with Ultravist370 in the simulation study using the generic material
decomposition models with (a) the Random Tree and (b) the REPTree. The
central projections are presented.

using the Stacking. Table I shows the performance on R and
SSIM (average± standard deviation) across all quantitative
measurements from the experiments. It can be noticed that,
there are two combinations, the Random Tree with the Bag-
ging and the REPTree with the Boosting, that demonstrate
superior performance comparing to the other methods.

IV. CONCLUSION

In this work, three representative ensemble methods of the
Boosting, the Bagging and the Stacking with two decision trees
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Figure 3. Decomposed material-specific projections of the biopsy needle in
the experimental study using the generic material decomposition models
with (a) the Random Tree and (b) the REPTree. The central projections are
presented.

were investigated to perform material decomposition in both
simulation study and experimental study. The performance
of the base learning algorithms was improved by using ap-
propriate ensemble methods, such as the Random Tree with
the Bagging and the REPTree with the Boosting. The results
indicate that it is feasible and promising to perform material
decomposition using ensemble learning, which is valuable to
be further investigated.
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