

Single Breath-hold Abdominal T₁ Mapping using 3-D Cartesian Sampling and Spatiotemporally Constrained Reconstruction

Felix Lugauer^{1,3}, Jens Wetzl¹, Christoph Forman², Manuel Schneider¹, Berthold Kiefer², Dominik Nickel² and Andreas Maier¹

¹ Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
 ² Siemens Healthcare GmbH, Diagnostic Imaging, Magnetic Resonance, Erlangen, Germany
 ³ Research Training Group 1773 "Heterogeneous Image Systems", funded by DFG

Declaration of Financial Interests or Relationships

Speaker Name: Felix Lugauer

I have the following financial interest or relationship to disclose with regard to the subject matter of this presentation:

Company Name: Siemens Healthcare GmbH Type of Relationship: Financial stipend

Motivation

Abdominal T_1 mapping

Biomarker for functional analysis of, e.g. liver¹, kidney², pancreas³

Clinical practice

- 2-D Inversion recovery (IR)/Look-Locker (LL)
 - + highly accurate
 - slow (single/few slice coverage)
- 3-D Variable Flip Angle (VFA)⁴
 - + fast (large coverage)
 - $-B_1$ bias (even with correction)

→ Fast and accurate 3-D IR/LL highly desirable

State-of-the-Art

3-D Look-Locker^{5,6} \rightarrow minutes for 3-D T₁ map

- + accurate
- + large coverage
- relaxation delay (shortened by magn. prep.)

Recently: non-Cartesian breath-hold 3-D LL⁷

Features: segmentation, higher acceleration, full relaxation assumption

- + breath-hold
- additional calibration scan (40s)

⁵ Henderson et al. MRI 17(8):1163-1171, 1999
⁶ Hui et al. NMR 26(11):1420-1430, 2013
⁷ Chen et al. MRM 75(4):1457-1465, 2016

3-D Cartesian Look-Locker

Aim: whole-liver T_1 mapping in self-contained single breath-hold (< 20s)

Hepatic T₁ range (field-strength, contrast enhancement): 0.3 - 1s

Requirements for LL acquisition:

- Acquisition long enough for high T₁ (2s)
- High temporal resolution for short T_1 (0.2s)

Exemplary 3-D matrix: 160x100x40, TR=2ms \rightarrow 40x acceleration factor (AF) needed

→ Combination of k-space segmentation (3-4x) and sparse sampling (10-14x)

3-D Acquisition Scheme

Divide k-space in *S* segments and repeat: inversion – measure – wait

• Wait time for steady-state to reach (approx.) full relaxation⁷: 3 - 5s

Sparse Incoherent Sampling

Variable density (VD) incoherent sampling \rightarrow Poisson disc

- Variable spatio-temporal incoherence (ϑ) while maintaining Poisson property
 - Additional rule for potential sample k at current TI t using accumulated mask (AM): $AM(k) \le VD(k) t + 0.5(1 - \vartheta), \quad 0 \le \vartheta \le 1$

Felix Lugauer et al. | Pattern Recognition Lab (FAU)

Segmentation and Reordering Strategy

Low gradient amplitude \rightarrow minimize avg. distance between successive samples (\overline{D}) High dynamic range for mapping \rightarrow early sampling of k-space center

Data Reconstruction

Joint Compressed Sensing reconstruction of all contrast images: 3-D+t

- Haar wavelet regularization in spatial and temporal domain
- Parallelization via decoupled 2-D+t reconstruction along readout after FFT

Phase-sensitive multi-step T_1 mapping^{8,9}:

- 1. <u>Solve</u> 3-parameter model: $M(A, B, T, t) = A Be^{-t/T}$
- 2. Extract M₀, T₁, FA, phase from **A**, **B**, **T** and smooth FA and phase map
- 3. <u>Solve</u> 2-parameter model (M_0 , T_1^*) using known FA and phase

⁸ Deichmann MRM 54(1):20-27, 2005 ⁹ Barral et al. MRM 64(4):1057-1067, 2010

Evaluation

Comparison against reference 2-D LL

• ROI analysis

Data

- NIST phantom data¹²
- 8 Volunteers

Scanner

• Siemens MAGNETOM Skyra (3T)/Aera (1.5T)

3-D setup 1.5T (3T): **FA = 3-5**, TR=1.9ms, TE=0.9, #TI=12, AF=12(10) 4(3) segments, wait time = 3(4.5)s Voxel size: 2.2x2.2x6mm³ Scan time: ~19s for 30 slices 2-D setup: FA=8, TR=2.9ms, TE=1.6, #TI=16, AF=PAT2 Pixel size: 1.9 x 1.9 mm² (8mm thickness) Scan time: ~3.8s per slice

¹⁰ Keenan ISMRM #3290, 2016

Results: NIST Phantom at 3T

 \rightarrow High agreement with nominal values and reference 2-D LL

Quantitative Results: In-vivo

Assessment of mean hepatic T_1 :

- Multiple ROIs in matching 2-D/3-D slices
- 8 volunteers (4 x 1.5T, 4 x 3T)

→ High agreement with reference 2-D LL Average ROI Std. deviation [ms] (1.5/3T) 2-D: 50.2 / 34.8 3-D: 42.0 / 39.9

Results: Qualitative Comparison at 1.5T

Proposed 3-D acquisition (30 slices in 19s)

Reference 2-D (2 slices in 8s)

- Six-fold gain of volumetric data in breath-hold (slightly lower resolution)
- Fully scanner integrated reconstruction < 5min on CPU (< 3min on GPU)

Discussion

Optimal configuration field-strength dependent

• Lower temporal resolution @3T \rightarrow less AF \rightarrow 3 segments sufficient

Challenges of segmented PSF

- Motion sensitivity: bigger issue than with e.g., 2-D multi-slice
- Scan efficiency (long delay at 3T)
 - Undercutting delay \rightarrow inconsistent magnetization \rightarrow artifacts possible
- → Magnetization preparation (lower B_1 robustness)

Summary

Accurate whole-liver T₁ mapping

- First application of single breath-hold Cartesian Look-Locker
- Features: segmentation, spatiotemporal sparsity and through-time regularized iterative reconstruction
- Highly accurate for phantom and volunteer data