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Abstract. Layered motion estimation (LME) in X-ray fluoroscopy is a
challenging, ill-posed and non-convex problem due to transparency effects
and the way the image is defined. Minimizing an energy formulation
of layered motion estimation is computationally expensive. For clinical
usability of this approach, we propose to use primal-dual optimization
parallelized using a graphical processing unit (GPU) to reduce the overall
run-time of this algorithm.

Experimentally this method is able to substantially reduce target regis-
tration error by 70% on manually annotated landmarks on five distinct
image sequences compared to the static baseline, similar to prior work
on this domain. However, the overall runtime of our method on a con-
ventional GPU is less than 3.3 seconds compared to several minutes for
the state of the art. Considering typical frame-rates of X-ray fluoroscopy
devices, this runtime makes the application of layered motion estimation
feasible for many clinical workflows.

1 Introduction

X-ray fluoroscopy, due to its very good spatial and temporal resolution, is an
important modality for clearly visualizing human body functions and internal
structures, and is commonly used for guidance in minimally invasive interven-
tions. Motion estimation is useful for many clinical applications in X-ray fluo-
roscopy such as blood flow monitoring, detection of dead tissues and tracking of
kidney stones and tumors. Cardiac and respiratory motion can be compensated
to improve visibility and perceptibility in Coronary DSA [1]. Fusion of previously
acquired roadmaps requires a motion estimate to accurately display overlays on
live fluoroscopic images [2].

Since X-ray images are formed by transparent projections of a 3-D volume
onto a 2-D plane, there is information loss as well as transparency effects in
the images. To solve the transparency problem in X-ray image registration, mo-
tion layers are introduced with a goal to calculate a 2-D motion field for each
layer. This approach involves estimation of both layers and motions with infor-
mation on neither available initially. Their dependency on each other causes a
chicken-and-egg problem since computation of layers requires motion estimated
and vice versa. Szeliski et al. assume parametric motion to simplify the problem
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and describe two methods to compute layers, using max and min composites for
sequential initialization and using constrained least squares optimization for iter-
ative refinement [3]. Preston et al. introduce a method to jointly estimate layers
and motions by using a total-variation layer gradient penalty and a smoothness
prior for motions [4]. To generate physiologically plausible motions, Fischer et
al. proposed to use surrogate signals to define a model of the layer motions [5]
and an alternating minimization scheme to calculate motions and layers.

The existing work by Fischer et al. [5] is able to plausibly estimate lay-
ers and motions. However, the runtime is several minutes and thus not feasible
for time-critical clinical applications. We propose to solve the layered motion
estimation problem using primal-dual optimization. Compared to other opti-
mizers, primal-dual methods are simple, easily parallelizeable, and can handle
non-smooth problems naturally. They involve splitting of the main problem into
simpler sub-problems that can be solved efficiently using computationally effi-
cient proximity operators. Thus, we implement layered motion estimation on
the graphical processing unit (GPU) to achieve a clinically acceptable time. In
the experiments, we demonstrate that a similar accuracy of motion estimation
as in [5] is achieved. Additionally, we analyze and compare the runtimes of the
different algorithms.

2 Methods

2.1 Layered Motion Estimation

We are interested in separating transparent X-ray images, denoted in this paper
as ¢ (with dimensions Ny x H x W) into multiple layers l,, (with dimensions
N; x H x W) and motions v,, (with dimensions N; x H x W x 2) that each layer
n undergoes, where Ny, Ny, W, H are number of images in the sequence, number
of layers, width of an image and height of an image respectively. In mathematical
terms, we can define our image as

I=a(l,v)+n (1)

where a (I, v) is a function that creates an image sequence estimate using bilinear
remapping of layers and motions and 7 is introduced to account for model errors
and observation noise in the log-transformed X-ray model [4].

Moreover, to make motions physiologically plausible, calculated base motions
v, are scaled using surrogate signals to obtain motions according to [5]:

Vo (@) = 5, (1) - v (@) (2)

In discretized form, the energy equation of the layered motion estimation (LME)
problem can be written as

min [a (L) =1l + N[V, + Ao Vol (3)
"V N——— N——

Data term Layer regularizer Motion regularizer
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where V is the gradient operator and A\; and A, are the regularizer weights.
The layer and motion regularization terms in this setup are to ensure layer
and motion smoothness. As proposed by Fischer et al. we solve this energy
minimization problem through alternate minimization by keeping one variable
(layers or motions) constant and minimizing energy function with respect to the
other [5].

2.2 Primal-Dual Minimization

Primal-dual minimization minimizes a given problem with respect to its primal
and dual form. For the given general problem, its primal form

z* e argar:nin G(z)+ H(Lx) (4)

and dual form
y* € argmin G*(~L"y) + H*(y) (5)
y

can be solved using Chambolle-Pock algorithm as proposed by Chambolle et
al. [6], where £ € RY and y € RE are vectors (primal and dual solutions)
in real Hilbert spaces, G and H are proper, convex and simple functions, and
L : RN — R¥ is a bounded linear operator.

Layer Minimization For layer minimization we can develop an algorithm
using appropriate proximity operators for our functions similar to Sidky et al.
[7]. Algorithm 1 shows layer minimization algorithm which involves solving with
respect to three variables, the primal variable I and the dual variables p and gq.
A; is a matrix encoding the application of the function a (I,v) from Eq. (3) to
l, which is linear in [ assuming constant motion.

Algorithmus 1 : Pseudo-code for N-steps I} — TV Chambolle-Pock algo-
rithm for layers. The constant K is the I — norm of the matrix defining L,
7 and o are non-negative step-size parameters, # is the update coeflicient
for primal variable, j is the iteration index and .J are the total predefined
number of iterations.
K« (A, V)|ly:7+ 1/K;0 + 1/K:;n < 0;0 < 1;j <0
l() — O.j() < l().p() +— 0, qo <— 0
while j < J do
pi+1 < (pj + o (Al; —i)) /max (1p, |pj +o (AL, — z)\)
gj+1 < X (g; +oVl;) /max (Alp,|q; + o (Vi;)])
Liv1 < U — TAT pj1 — 7V gjn
L1 L1 +0 (i = 1)
jeji+1
end
return l;
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Motion Minimization Similarly, Algorithm 1 can be modified to develop a
minimization algorithm for motions with change of primal variable, ,, — v,
and remapping function A; — A,,, where A, is approximating the application
of a (I,v) tov. A, is not linear in v, but the algorithm still converges empirically.

2.3 Implementation

The implementation for the layered motion estimation algorithm is based on a
coarse-to-fine method and a two-layer model, a static layer and a respiratory
layer. The surrogate signal for the static layer is s; (t) = 0 to describe static
components in the images. For the respiratory layer, the surrogate signal so (t) is
extracted from the intensities of the entire X-ray image sequence using manifold
learning. The regularisation term weights for layer and motion smoothness are
empirically calculated and set to A\, = 0.05 and A\, = 0.025. Similarly the step
sizes for layer and motion minimization problems are also empirically calculated.
For all the results obtained during the experiments, an Nvidia Quadro K5000
GPU and an Intel Xeon E5-1650 processor were used. The code was optimized
with respect to minimum data transfer between CPU and GPU and data spread
over maximum number of threads on the GPU.

3 Experiments and Results

The experiments were calculated on 5 clinical data sets containing 50 frames
each at a maximum resolution of 128 x 128 pixels. As a measure of error, target
registration error (TRE) was calculated using differences between each point on
a manually annotated curve on landmark regions and the computed curve [5]. To
obtain a benchmark for comparison, layered motion estimation was implemented
using a L-BFGS-B minimizer with tolerance level of 1075, similar to [5].

Fig. 1 shows results of the proposed algorithm on an image sequence. Fig. 1(a)-
(d) show four frames from the image sequence while Fig. 1(e)-(h) show respective
calculate motions on those frames. Fig. 1(i) shows the calculated static layer and
Fig. 1(j) the respiratory layer while Fig. 1(k) shows TRE over time in compari-
son to the dotted line which represents the case when there is no motion in the
sequence.

The aim of this work was to bring the overall runtime into a clinically feasible
range. Fig. 2(a) shows the improvements in overall runtime between the different
implementations of this algorithm, primal-dual (PD) and L-BFGS-B (QN) exe-
cuted on CPU and GPU. Moreover, the decrease in time should not compromise
on the quality of results. To study the performance of our primal-dual algorithm
relative to L-BFGS-B, we tested the two versions on 5 distinct image sequences
and calculated TRE error means and standard deviations. When compared to
TRE on a stationary sequence, 4.98 £+ 3.14 mm, L-BFGS-B reduced the TRE
to 1.45 &+ 0.50 mm and primal-dual also showed similar results, 1.46 £+ 0.47 mm
for empirically tuned step-sizes with respect to each image sequence.



LME using Primal-Dual Optimization 5

(a) Image 0 (c¢) Image 25 (d) Image 35

==+ STATIC
— LME

TRE [mm]

70

20 30
t [image number]

(i) Static layer  (j) Respiratory layer (k) TRE over time

Fig. 1. Layered motion estimation results on an image sequence

To compare the performance of the two methods in more detail, we look at
the convergence of both algorithm versions for same data set. Fig. 2(b) shows the
energy convergence with respect to number of iterations while Fig. 2(c) shows
the convergence of both algorithm versions with respect to time.

4 Conclusion and Outlook

Use of a faster and easily parallelizeable primal-dual method instead of L-BFGS-B
minimization together with implementation on the GPU helped us to reduce the
overall runtime of the algorithm from 642 seconds to less than 3.3 seconds for
an image sequence containing 50 frames while maintaining the quality of results.
This algorithm can handle a rate of 15 frames per second which is usually quite
high for an x-ray fluoroscopy machine. Moreover, it was able to reduce the overall
TRE by 70% for step-size parameters tuned with respect to each image sequence,
which means primal-dual method performed on par with L-BFGS-B method.
In future work, more layers can be incorporated into this model especially
to cater for cardiac motion. Automatic step-size calculation for primal-dual op-
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Fig. 2. Comparison: Primal-Dual vs. L-BFGS-B

timizer is an important improvement that can be worked on in order to rely
less on empirically calculated values. Although this algorithm has been tested
on clinical data, it still needs to be incorporated into a clinical prototype and
tested on live subjects.
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