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ABSTRACT

This article presents a novel neural network-based approach
for enhancement of 3D medical image data. The proposed
networks learn a sparse representation basis by mapping the
corrupted input data to corresponding optimal targets. To re-
inforce the adjustment of the network to the given data, the
threshold values are also adaptively learned. In order to cap-
ture important image features on various scales and be able to
process large computed tomography (CT) volumes in a rea-
sonable time, a multiscale approach is applied. Recursively
downsampled versions of the input are used and denoising
operator of constant size are learnt at each scale. The net-
works are trained end-to-end from a database of real high-
dose acquisitions with synthetic additional noise to simulate
the corresponding low-dose scans. Both 2D and 3D networks
are evaluated on CT volumes and compared to the block-
matching and 3D filtering (BM3D) algorithm. The presented
methods achieve an increase of 4% to 11% in the SSIM and
of 2.4 to 2.8 dB in the PSNR with respect to the ground truth,
outperform BM3D in quantitative comparisions and present
no visible texture artifacts. By exploiting volumetric informa-
tion, 3D networks achieve superior results over 2D networks.

Index Terms— CT, 3D neural networks, denoising au-
toencoder

1. INTRODUCTION

CT reconstructs medical images from multiple X-ray projec-
tions through the body at multiple orientations. Due to the use
of ionizing radiation, CT acquisition must achieve a trade-
off between the radiation dose and the signal-to-noise ratio.
Therefore, multiple regularized image reconstruction [1, 2]
and denoising methods [3, 4] were proposed to reduce the
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dose required to obtain an intepretable image. Recently, deep
learning approaches have shown promising results for denois-
ing [5, 6] and have been applied to CT [7, 8]. However, pure
data-driven approaches suffer from an implicit dependency
to the acquisition parameters (e.g. the noise level), and deep
learning methods can become too expensive when applied to
large 3D volumes. Inspired by the work in [9], we propose
to find sparse approximations using neural networks that are
trained in the fashion of a convolutional sparse denoising au-
toencoder. The proposed architecture features a pyramidal
decomposition to accelerate 3D processing and can accomo-
date the noise level as separate input to learn how to adapt to
it.

2. MULTISCALE SPARSE CODING NETWORKS

We formulate the idea of sparsity-based denoising algorithms
in terms of a feed-forward neural network. However, by learn-
ing both the dictionary that was randomly initialized as op-
posed to using predefined appropriate basis filters and the
scale of our thresholding function in order to optimally attach
the parameters to the given data.

2.1. CT Denoising Problem

Noise texture is always present in CT images: if the image
is noise-free, then the patient was arguably subjected to a
higher dose than necessary. For that reason, radiologists are
trained to read noisy images and may be more comfortable
with these than with denoised images. However, image de-
noising is rarely an end goal on its own. The denoised image
is going to be used for some other task and the denoising per-
formance should thus be evaluated (and ideally trained) by its
impact on downstream tasks, even if those are not automated.
Obtaining natural-looking images using supervised training
as proposed in this work provides a significant step towards
clinical acceptance.
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Fig. 1: Plot of the non-negative garrote function (solid) along
with the soft thresholding (dotted-dashed) and hard threshold-
ing (dotted) functions.

In general, the image denoising problem consists in esti-
mating a hidden image x as a function of a noisy observation
y = x + ε. In CT images reconstructed by filtered back-
projection, the noise ε is not white because a low-pass con-
volution kernel applied during the reconstruction shapes the
noise into a texture [10]. Besides, an exact statistical descrip-
tion of the noise in image domain is hard to provide because
the noise is non-Gaussian in the raw measurement domain.

2.2. Sparse Denoising Autoencoder

A denoising autoencoder [11] is a neural network N trained
on image pairs (y,x) that learns to realise the denoising map-
ping x̂ , N (y) ≈ x. Adopting a supervised learning ap-
proach to CT denoising can help in two ways. First, it al-
lows the algorithm to learn the statistics of the noise rather
than to use a complex approximate model. Second, if the
ground truth images come from a real high-dose clinical, then
they still contain some noise, and the algorithm can learn to
denoise while preserving the noise texture, which can lead
to more natural-looking images and higher perceived image
quality [12].

However, learning a noise model can also have the draw-
back of tying the network to one particular scanner setting.
This would make the network hard to use in clinical practice
where technologists routinely adjust the dose, e.g. to adapt
to the patient’s body mass. In the context of sparse denois-
ing, it is well known that one can adapt to the noise level by
changing the value of the threshold applied to the obtained
coefficients in a certain representation domain [13]. For this
reason, this work uses a transform-domain denoiser as the ar-
chitecture of the autoencoder:

x̂ =W ′h(Wy), (1)

with W a trainable convolutional decomposition operator,
W ′ a trainable reconstruction operator and h a sparsity-
inducing activation function. The number of free parameters
is further reduced by imposing W ′ =W T , which is equiva-
lent to constrainingW to be a tight frame.

2.3. Thresholding Function

Sparse denoising algorithms are based on the observation that,
given a representation of a noisy image in a suitable basis, the
small coefficients will be mainly due to noise while the few
large coefficients capture the main image features. Similarly,
in our feed-forward neural network an appropriate threshold-
ing function should thus set the small transform coefficients
to zero and keep the large coefficients in order to obtain a de-
noised estimate. The non-negative garrote function [15] was
shown to successfully remedy the disadvantages of both soft
and hard thresholding functions which are often used for this
task [16]. While the soft shrinkage comes with a bigger bias
due to the shrinkage of large coefficients, the hard shrink-
age function is not continuous and thus more likely to have
bigger variance and introduce instability as it is sensitive to
small changes in the data. Fig. 1 shows a plot of the non-
negative garrote function along with the soft and hard thresh-
olding functions. It is dependent on the noise level σ and a
thresholding level k and forces sparsity on each representa-
tion coefficient zj by:

ẑj = hgarrote(zj) =
(z2j − kσ2)+

zj
, (2)

to obtain the thresholded coefficients ẑ. The positive part
function + is defined as x+ = max(x, 0). The noise vari-
ance σ2 is an input to the network (which enables training and
testing at multiple dose settings), and the thresholding value
k is a trainable parameter. Its inital value should be chosen
very small to avoid starting in the flat region around 0 where
backpropagation would fail to generate gradients.

2.4. Learning a Multiscale Representation

Successful 2D denoising results were reported using filters
of size 17×17 [5]. However, such large filters would be
prohibitively expensive to apply to large 3D CT volumes of
size 5123 and larger. We rather suggest combining the sparse
denoising autoencoder with a pyramidal decomposition as
shown in Fig. 2: instead of increasing the filter size, the im-
age is downsampled recursively and processed at all scales
with the same filter size. While the operator W could in
principle be shared across scales, it was found to degrade the
denoising quality in our tests. Therefore, in the presented
results 3 distinct operators are learnt.



Fig. 2: Block diagram of the multiscale sparse coding network operating on three scale levels. Low-pass wavelet decomposition
is carried out by convolution followed by downsampling (denoted by LPF) while wavelet reconstruction consists of successive
upsampling and transposed convolution (denoted by LPFT ). The high-pass wavelet decomposition and the consecutive re-
construction are both summarized under HPF. In absence of the thresholding function, the sum of LPFT and HPF realizes
near-perfect reconstruction [14].

2.5. Network Architecture

The architecture of the 2D multiscale sparse coding network
is illustrated in Fig. 2. It consists of sparse denoising autoen-
coder blocks which repeat on further decomposition levels.
Each sparse denoising autoencoder first maps its input to a
hidden representation by using a convolutional layer which
consists of 25 filter kernels of size 5×5 and accordingly of
25 filters of size 5×5×5 in 3D. These 25 filters correspond
to the elements of the dictionary W that we seek to learn.
The obtained 25 feature maps, i.e. the representation coeffi-
cients, are thresholded by applying the non-negative garrote
function hgarrote (see Equation 2) and eventually reconstructed
to the same shape as the autoencoder input by using a trans-
posed convolutional layer with the dictionary filter elements
(corresponds to a convolution with a filter of size 25×5×5).

The pyramidal decomposition was implemented with a
Daubechies-2 separable orthogonal wavelet basis, using the
LL (or LLL in 3D) band as the low-pass filter and summing
all other bands into the high-pass part. During decomposi-
tion, downsampling is performed together with low-pass fil-
tering by using a strided (stride 2) convolutional layer (sum-
marized under LPF in Fig. 2). After denoising, perfect re-
construction of the low-pass branches is achieved by upsam-
pling with zero-filling followed by low-pass filtering LPFT .
On the high-pass branches, the high-pass filter is not applied
before the denoising autoencoder so that the images at differ-
ent scales still have similar contrast. So in order to preserve
perfect reconstruction, the high-pass filter block HPF applies
both the decomposition and reconstruction high-pass wavelet
filters.

On each scale level, a distinct operator of the same sized
filter kernels W1, ...,Ws is learnt where s denotes the num-

ber of scale levels that are considered. In our network where
we apply convolutional layers with filter kernels of size 5×5,
the downsampling approach effectively corresponds to pro-
cessing of the original sized network input with filters of size
10×10 on scale level 2 and with filters of size 20×20 on scale
level 3 etc. The 3D network is obtained by replacing all 2D
operations with their 3D counterparts.

3. EXPERIMENTS

An effective denoising algorithm should be able to reconstruct
sharp edges of organ boundaries and used medical instru-
ments since these often contain the most useful information
about the patient's condition. It should not produce artifacts,
such as ringing effects along edges, splotchy artifacts or artif-
ical structures, as these impede the physician to make correct
decisions. In the following, we evaluate our 2D/3D multi-
scale sparse coding networks for denoising on synthetically
corrupted CT slices/volumes.

3.1. Datasets

The dataset consists of contrast-enhanced CT scans in pre-
contrast, arterial and veinous phases of the liver from 10 dif-
ferent patients with a resolution of 1×1×0.3 mm. From the
same raw data, virtual low-dose data were created through the
addition of signal-dependent Gaussian noise. The noise addi-
tion was calibrated such that the output data pertain to a dose
value of 30% of the original dose. These virtual low-dose data
were reconstructed to obtain the low-dose volume datasets.
This process ensures that the high and low-dose images are
perfectly registered, avoids scanning patients twice and guar-
antees that the noise texture is natural in both images. Since
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Fig. 3: Comparison of original high-dose image and its corresponding artifically corrupted low-dose image to results obtained
with our 2D and 3D networks and the BM3D approach on test dataset 1 whose quantitative results are given in Table 1. The red
arrows highlight artifacts produced by the BM3D while the green arrows point to anatomical structures which were recovered
by our 3D network and are less visible on the original high-dose acquisition.

training and testing were performed on a single dose reduc-
tion setting, the noise level input was not used. Instead, σ was
set to 1 and the threshold values were learnt. However, the va-
lidity of the approach to train and test at multiple noise levels
has already been demonstrated in previous work on 2D im-
ages [17]. A split at patient level in 80% - 20% proportion is
made to determine the training and validation set. 2D and 3D
denoising networks were trained on 150000 overlapping 2D
patches extracted from 50 randomly selected CT slices and
10000 overlapping 3D patches extracted from 50 randomly
chosen CT volumes, respectively.

3.2. Network and Training Specifications

Both the 3D and 2D networks operate on three scale levels
as the use of more than two decomposition levels did not fur-
ther improve the results. We compare our 3D network, which
performs denoising on CT volumes, to a 2D version of the
network which is applied to CT slices and eventually to re-
sults using the BM3D algorithm [18], which is currently con-

sidered state-of-the-art in image denoising. It performs de-
noising by grouping similar 2D image patches into 3D stacks
and subsequently applying collaborative filtering to the simi-
lar blocks. Due to the high computational costs of 3D train-
ing, the dimensions of our networks were selected post-hoc on
the 2D task after conducting several experiments and extrap-
olated to 3D. In the 2D network, the learned filter basis was
selected as 25 filter kernels of size 5×5, and in the 3D case
as 25 filter kernels of size 5×5×5. The networks were im-
plemented in Python using the Theano [19] and Lasagne [20]
packages. All networks were randomly initialized with Gaus-
sian weights and trained from end-to-end for 1500 epochs
with early stopping with the ADAM algorithm [21]. We ap-
ply a learning rate of µ = 10−4. The objective function to
compute the loss is selected as the l1 norm of the error [22].

3.3. Results

The 2D and 3D networks were evaluated on CT data using
both objective metrics and by visual evaluation. On an Nvidia



Test Dataset Metrics Noisy 2D Network 3D Network BM3D

1 PSNR [dB] 38.54 41.39 41.33 40.57
SSIM 0.91 0.95 0.95 0.94

2 PSNR [dB] 40.86 43.32 43.36 42.56
SSIM 0.87 0.97 0.97 0.96

Table 1: Quantitative results (PSNR/SSIM w.r.t. the ground truth) of our 2D/3D networks and the BM3D on two test datasets.

Original 3D Network BM3D

Fig. 4: Comparison of original high-dose image to the 3D network output and the BM3D results on test dataset 2 whose
quantitative results are given in Table 1. Texture artifacts produced by the BM3D are clearly visible in homogeneous regions,
such as the liver. Some of these regions are highlighted with red arrows.

Geforce GTX GPU, the denoising time for the 3D network is
about 1 minute for a 512×512×1000 volume (sliced in mul-
tiple 512×512×128 slabs to fit in the GPU memory.)

3.3.1. Quantitative Evaluation.

Quantitative evaluation was performed using the peak-signal-
to-noise ratio (PSNR), which is a pixel difference-based mea-
sure and the structural similarity index measure (SSIM) [23].
Both the 2D and 3D networks outperform BM3D for both
evaluation metrics. For both our test datasets, which we de-
note as test dataset 1 and test dataset 2, the networks produce
outputs with an increased SSIM by around 4% and 11% and
an increased PSNR by around 2.8 dB and 2.4 dB, respectively.
The SSIM for the 3D network result is equal but unable to ex-
ceed the SSIM of the 2D network output, and the PSNR for
test dataset is lower for the 3D network than for the 2D net-
work as shown in Table 1.

3.3.2. Qualitative Evaluation and Discussion.

From a visual perspective, our networks avoid producing tex-
ture artifacts which are clearly visible in the BM3D results
as shown in Fig. 4. The results obtained with the 3D network
clearly outperform the 2D-based approach from a visual point

of view. By exploiting the rich spatial content, organ bound-
aries are much sharper reconstructed and small details, such
as texture patterns, are better recovered as shown in Fig. 3.

However, the quantitative results that are summarized in
Table 1 do not indicate a superior performance of the 3D over
the 2D network. One possible explanation is that quantitative
evaluation was performed on the full dynamic range images
whereas CT images are typically viewed after applying win-
dowing (i.e. dynamic range compression). That choice for
quantitative evaluation was made to avoid introducing a bias
towards bones or soft tissues. It also explains why the quan-
titative results are rather high for all methods, including the
noisy low-dose image.

4. CONCLUSION

The main contribution of this work is the use of neural net-
works to learn a sparse representation for 3D data from which
noise-free estimates can be reconstructed. Experiments with
the CT datasets show that the proposed networks do not in-
troduce noticeable texture artifacts in contrast to the BM3D
method. The multiscale networks are able to learn a map-
ping from artificially corrupted to high-dose data without the
need of prior information about underlying noise models of
the given data.



Thanks to the introduction of a learnable threshold value
that is proportional to the input noise level, the network
should be able adapt to the dose. Future works will include
testing the efficiency of the method in multiple dose settings,
as well as improving its adaptivity to a wider range of imag-
ing parameters, such as the tube voltage (which affects image
contrast), region-of-interest, reconstruction resolution, and
reconstruction kernel (which affects the noise texture).
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