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TaggedPAbstract

Change in voice quality (VQ) is one of the first precursors of Parkinson’s disease (PD). Specifically, impacted phonation and

articulation causes the patient to have a breathy, husky-semiwhisper and hoarse voice. A goal of this paper is to characteriD13X Xse a VQ

spectrum � the composition of non-modal phonations � of voice in PD. The paper relates non-modal healthy phonations: breathy,

creaky, tense, falsetto and harsh, with disordered phonation in PD. First, statistics are learned to differentiate the modal and non-

modal phonations. Statistics are computed using phonological posteriors, the probabilities of phonological features inferred from

the speech signal using a deep learning approach. Second, statistics of disordered speech are learned from PD speech data compris-

ing 50 patients and 50 healthy controls. Third, Euclidean distance is used to calculate similarity of non-modal and disordered sta-

tistics, and the inverse of the distances is used to obtain the composition of non-modal phonation in PD. Thus, pathological voice

quality is characterised using healthy non-modal voice quality “base/eigenspace”. The obtained results are interpreted as the voice

of an average patient with PD and can be characterised by the voice quality spectrum composed of 30% breathy voice, 23%

creaky voice, 20% tense voice, 15% falsetto voice and 12% harsh voice. In addition, the proposed features were applied for pre-

diction of the dysarthria level according to the Frenchay assessment score related to the larynx, and significant improvement is

obtained for reading speech task. The proposed characterisation of VQ might also be applied to other kinds of pathological speech.

� 2017 Published by Elsevier Ltd.
TaggedPKeywords: Phonological features; Non-modal phonation; Parkinson’s disease

1. Introduction

TaggedPSpeech of hypokinetic dysarthria in Parkinson’s disease (PD) is characterised by hypokinesia (rigid, less motion

describing decreased range and frequency of movement) of the vocal folds and articulators. Besides of impacted
I This paper has been recommended for acceptance by Roger Moore.
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TaggedPprosody and articulation, phonation is impacted by incomplete vocal fold adduction. Clinicians, otolaryngologists

and speech-language pathologists, consider hoarseness � a rough quality of voice � as a basic symptom of a voice

disorder in PD. When hoarse, the voice may sound breathy, raspy, or strained, and if this abnormal/pathological

voice quality is accompanied with relatively constant loudness and pitch deviations, it is diagnosed as Parkinsonian

dysphonia (Aronson and Bless, 2011).

TaggedPHealthy subjects may also produce speech sounds of different voice quality based on different modes of vibration

of the vocal folds. Laver (1980) defines the term of voice quality in a broad sense as the characteristic auditory col-

ouring of an individual speaker’s voice, and not just in a narrow sense coming from the laryngeal activity. The neu-

tral mode phonation, often used in modal voice, is one against which the other modes can be contrastively described,

also called non-modal phonations. Ladefoged and Johnson (2014) describe four basic states of the glottis (which is

defined as the space between the vocal folds). The position of the vocal folds is adjusted by the arytenoid cartilages

placed toward the back. In (i) a voiced sound, the vocal folds are close together (adducted) and vibrating, whereas in

(ii) a voiceless sound, they are pulled apart (abducted). If there is considerable airflow, the abducted vocal folds will

be set vibrating � flapping in the airstream � producing what is called (iii) breathy voice, or murmur. Alternatively,

breathy voice is produced with the vocal folds apart only between the arytenoid cartilages in the lower (posterior)

part. If the arytenoid cartilages are tightly together, so that the vocal folds can vibrate only at the anterior end, (iv)

creaky voice is produced. Creaky-voiced sounds may also be called laryngeali D14X Xsed. Besides these basic non-modal

phonation, Laver (1980) defines tense, harsh and falsetto phonations. Such voice qualities impact the production of

the speech sounds, and we hypothesise that these changes might be captured by changes in phonological features.

TaggedPThe goal of this paper is to present a study on the production of speech sounds with healthy non-modal phonation,

and project its non-modal statistics to analysise disordered production of speech sounds with pathological phonation.

This approach might help to aleviate a problem of missing data in research of pathological speech. Voice quality of

the speech sounds can be characterised by phonological features (Cernak et al., 2017b), and the current work pro-

poses to use differential phonological posterior features (between modal and non-modal, and between healthy and

disordered phonations) for characterisation of both healthy non-modal and parkinsionian phonations. Comparing to

the work of Cernak et al. (2017b), the novel aspects of this paper is in using pathological speech and characterisD15X Xation

of pathological voice quality using healthy non-modal voice quality “base/eigenspace”. An Euclidean distance

between the non-modal and disordered phonation characterisations quantifies the composition of non-modal voice

qualities in PD. This characterisation of non-modal phonation in PD is novel, and shows objective quantification of

voice quality using phonological features not investigated in previous approaches.

TaggedPFor studying speech with non-modal phonation, the read-VQ database of Kane (2012) is used, the recording of

which was inspired by prototype voice quality examples produced by Laver (1980). Laver’s recordings are consid-

ered as recordings of non-modal phonation with excellent quality, however only one utterance per phonation type is

available, and thus they are speaker-specific. The read-VQ database contains recordings from four speakers. The

database covers five different non-modal phonations: falsetto, creaky, harshness, tense and breathiness. For studying

speech with pathological phonation, the Colombian-Spanish database (Orozco-Arroyave et al., 2014) is used, which

contains speech recordings of 50 patients with PD and 50 healthy controls (HC).

TaggedPThe structure of the paper is as follows: Section 2.1 gives an overview of the non-modal (healthy) and pathologi-

cal (Parkinsonian) phonation types considered in this work. Section 3 introduces differential phonological posterior

(DPP) features used in further characterisation of VQ. Section 4 describes experimental setup and evaluation data-

bases, and Section 5 presents results and their validation. Finally, Section 6 concludes the paper.
2. Voice quality of Parkinson’s disease

2.1. Non-modal (healthy) phonation

TaggedPDifferent modes of vibration of the vocal folds contribute significantly to VQ. The modal (periodic) phonation

can be contrastively described against the other modes, also called non-modal (aperiodic) phonations.

TaggedPRecent work on non-modal phonation focuses on detection (Drugman et al., 2014), analysis (Malyska, 2008;

Malyska et al., 2011) and synthesis (Bangayan et al., 1997) of speech with non-modal phonation. Modern computa-

tional paralinguistics tries to 1) get rid of non-modal phonation, or 2) model it, for example, for classification
Please cite this article as: M. Cernak et al., Characterisation of voice quality of Parkinson’s disease using

differential phonological posterior features, Computer Speech & Language (2017), http://dx.doi.org/10.1016/j.
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TaggedPpurposes (Schuller and Batliner, 2013). Non-modal phonation is also studied in sociolinguistics. For example, creaky

and falsetto phonations are used more commonly by women (Anderson et al., 2014; Podesva, 2007).

TaggedPBreathy and creaky voices belong to the most studied non-modal phonation types. In breathy phonation, the vibra-

tion of the vocal folds is accompanied by aspiration noise, which causes a higher first formant bandwidth and a miss-

ing third formant (Klatt and Klatt, 1990) due to steeper spectral tilt (Hanson, 1997). In creaky phonation (also

referred to as vocal fry, laryngealisation), secondary vibrations occur with lower fundamental frequencies.

TaggedPTense voice is produced with higher degree of overall muscular tension involved in the whole vocal tract. The

higher tension of the vocal folds does not result in irregularities that are seen in harsh voice. It is characterised by

richer harmonics in higher frequencies due to a less steep spectral tilt. Harsh voice is a result of very high muscular

tension at the laryngeal level. Pitch is irregular and low, and the speech spectrum contains more noise.

TaggedPFalsetto voice is the most different with respect to modal voice (Laver, 1980). The voice is produced with thin

vocal folds, that results in a higher pitch voice with a steeper spectral slope.
2.2. Pathological (Parkinsonian) phonation

TaggedPAuditory-perceptual evaluation of disordered VQ is the most commonly used clinical assessment method, and is

considered by clinicians as the “gold standard” for documenting voice impairment severity (Kreiman et al., 1993).

Describing a particular voice as breathy and rough, for example, is likely to be more easily interpreted by a wide

range of people than a description that specifies the noise-to-harmonic ratio associated with that voice (Oates, 2009).

Moreover auditory-perceptual evaluation is cheap and practical. Perceptual analysis is used with the human auditory

perceptual system, often in combination with an external rating system, such as the GRBAS protocol (Hirano, 1981)

developed by the Japanese Society of Logopedics and Phoniatrics. The GRBAS protocol contains 4-point scales for

grade (overall severity), roughness, breathiness, asthenia (lack of vocal power), and strain.

TaggedPOn the other hand, the perceptual evaluation has been characteri D16X Xsed by questionable validity and poor reliability,

adding further analysis error via measurement and scaling issues (Aronson and Bless, 2011), and missing consensus

on stimulus categories (Barsties and De Bodt, 2015). At present, the Consensus Auditory Perceptual Evaluation of

Voice (CAPE-V)1, containing six primary perceptual parameters (overall severity, roughness, breathiness, strain,

pitch, and loudness), is undergoing field testing, and experimental data on its validity and reliability are forthcom-

ing.

TaggedPAcoustic analysis is widely employed in clinical and research settings, and focuses on analysis of parkinsonian

speech that provides objective measures of vocal function, such as fundamental frequency, signal amplitude, jitter,

shimmer, noise-to-harmonic ratios, voice onset time and glottal leakage, and last but not least the spectral features

such as spectral tilt (Holmes et al., 2000; Little et al., 2009; Rusz et al., 2011; Bauer et al., 2011). Parkinsonian

speech is characterised by higher jitter (more roughness), higher shimmer, descreased pitch range, shorter maximum

phonation time and slower diadochokinetic (articulation) rate (Darley et al., 1969). However, acoustic measures can-

not be applied to more severe disordered voices due to their nonlinear and non-Gaussian random properties (Little

et al., 2007), that limits their clinical usefulness.

TaggedPThere is a considerable amount of literature on objective perceptual evaluation based on acoustic and aerody-

namic speech production characteristics. For example, Wuyts et al. (2000) propose a Dysphonia Severity Index, con-

structed from highest frequency, lowest intensity, maximum phonation time and jitter. Bhuta et al. (2004) and Maryn

et al. (2009) provide detailed studies of correlation of acoustic measurements with perceived voice quality. Recent

methods include in objective perceptual evaluation also spectral/cepstral features, such as spectrum slope and tilt

(Maryn et al., 2010), and cepstral peak prominence (Awan et al., 2009).
3. Differential phonological posteriors

TaggedPThe probabilities of phonological features inferred from the speech signal � phonological posteriors � can be

reliably estimated using a deep learning approach (Cernak et al., 2015). This extraction processes is further called

phonological analysis. In this work, the Sound Patterns of English (SPE) feature set of Chomsky and Halle (1968) is
1 http://www.asha.org/uploadedFiles/members/divs/D3CAPEVprocedures.pdf.
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TaggedPused. Motivation to this older phonological system was that (i) it takes the articulatory production mechanism as the

underlying principle of phoneme organisation (and thus allows easier interpretation of obtained results), and (ii) SPE

assumes that the flat, unstructured binary feature specifications are language independent and characterise the set of

possible phonemes in languages of the world (and thus is more suitable for studies with more languages like

described in this paper). The mapping from phonemes to SPE phonological classes is taken from Cernak et al.

(2017a). The distribution of the phonological labels is non-uniform, driven by mapping different numbers of pho-

nemes to the phonological classes.

TaggedPPhonological analysis starts with a short-term analysis of speech, which consists of converting the speech signal

into a sequence of acoustic feature vectors X ¼ f~x1; . . . ;~xn; . . . ;~xNg. Each~xn is also known as an acoustic frame or

just frame, and can be composed by the conventional Mel frequency cepstral coefficients (MFCC). N is the number

of frames and frames are equally spaced in time.

TaggedPThen, K phonological probabilities zkn are estimated for each frame. Each probability is computed independently

by using a binary classifier based on deep neural network (DNN) and trained with one class versus the rest. Finally,

the acoustic feature observation sequence X into a sequence of phonological vectors Z ¼ f~z1; . . . ;~zn; . . . ;~zNg.
Each vector ~zn ¼ ½z1n; . . . ; zkn; . . . ; zKn �> consists of phonological class posterior probabilities zkn ¼ pðckjxnÞ of

K phonological features (classes) ck. The a posteriori estimates p(ckjxn) are 0 � p(ckjxn) � 1, 8k, and

max
PK

k¼1 pðckjxnÞ ¼ K.

TaggedPThe matrix of posteriors Z consists of N rows, indexed by the processed speech frames, and K columns. The

following analysis is done on non-silence speech frames of the evaluation data:

mk ¼
1

Ns

XNs

n¼1

pðckjxnÞ; 8 n, pðcSILjxnÞ< 0:5; ð1Þ

where cSIL is a posterior probability of silence class being observed, and NS is the number of non-silence frames. The

probability of cSIL is computed as for the other phonological classes (i.e., the silence versus the rest) but it is only

taken into account when computing each mk. The statistics mk is calculated for different “contrastive” data groups,

such as data with modal vs. data with non-modal phonations, and data from healthy speakers vs. data from patholog-

ical speakers.

TaggedPDifferential phonological posterior (DPP) features are obtained by mean normaliD17X Xsation of contrastive data:

DmNM
kl ¼ mnon�modal

kl �mmodal
kl ;

DmP
k ¼ mPD

k �mHC
k :

ð2Þ

Thus, the non-modal mean posteriors are normali D18X Xsed by modal means that yields the normali D19X Xsed statistics DmNM
l ¼

½DmNM
1l ; . . . ;DmNM

kl ; . . . ;DmNM
Kl �> for l 2 L non-modal phonations, and PD posteriors are normalis D20X Xed by means from

healthy speakers that yields pathological (Parkinsonian) statistics DmP ¼ ½DmP
1 ; . . . ;Dm

NM
k ; . . . ;DmNM

K �> .

TaggedPFinally, similarity of non-modal phonation and pathological speech is calculated as the Euclidean distance:

ql ¼ kDmP�DmNM
l k ; ð3Þ

for l 2 L non-modal phonations, where ql represents a similarity of the l-th non-modal phonation with VQ in PD. The

Euclidean distance was already successfully used as a similarity measure between VQ characterisations in forensic

speaker comparison (San Segundo et al., 2017).

TaggedPThe normali D21X Xsation of the mean posteriors by the posterior features from the modal or healthy speakers is concep-

tually similar to likelihood ratio test in speaker recognition (Hansen and Hasan, 2015), where likelihoods from the

speaker model are subtracted by likelihoods obtained from the background/world model. In the DPP features, the

background models represent the modal phonation and healthy speakers.
4. Experimental setup

4.1. Training data

TaggedPThe phonological analyser is trained on the Wall Street Journal (WSJ0 and WSJ1) continuous speech recognition

corpora Paul, Baker, (1992). This training database consists primarily of read speech using a close-talking
Please cite this article as: M. Cernak et al., Characterisation of voice quality of Parkinson’s disease using

differential phonological posterior features, Computer Speech & Language (2017), http://dx.doi.org/10.1016/j.
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TaggedPSennheiser HMD414. The si_tr_s_284 set of 37,514 utterances was used, split into 90% training and 10% cross-

validation sets. Titze (1995) recommends the WSJ database to be used in acoustic analysis research of pathological

speech. In addition, Cernak et al. (2015) introduced a deep learning approach using WSJ data to achieve high classi-

fication accuracy of phonological features.

4.2. Evaluation data

TaggedPPrototype voice quality examples produced by Laver (1980) and the read-VQ database of Kane (2012) were used

to obtain characterisation of modal and non-modal phonation. Audio of the read-VQ database was recorded at

44.1 kHz using high quality recording equipment: a B&K 4191 free-field microphone and a B&K 7749 pre-

amplifier. The microphone was placed at a distance of approximately 30 cm from the speaker and participants were

asked to keep this distance as constant as possible throughout the recording session. Recordings were subsequently

downsampled to 16 kHz.

TaggedPThe read-VQ database contains 4 speakers (2 males and 2 females) who were asked to read 17 sentences in six

different phonation types: modal, breathy, tense, harsh, creaky, and falsetto. Participants were given prototype voice

quality examples, produced by John Laver and John Kane, and were asked to practise producing them before coming

to the recording session. For the recordings, participants were asked to produce the strong versions of each phonation

type and to maintain it throughout the utterance. During the recording session, participants were asked to repeat the

sentence if it was deemed necessary. The sentences were chosen from the phonetically balanced sentences in the

TIMIT corpus (Garofolo et al., 1993), four of which contained all-voiced sounds. 451 sentences were chosen to

obtain a wide phonetic coverage, as it is likely that it can be very difficult for speakers to maintain a constant type of

phonation over a long utterance. The recordings with modal phonation were 2.2 D22X Xmin D23X Xlong, and the remaining record-

ings with non-modal phonation were 2.0 min D24X X long each. The read-VQ data was used for estimation of non-modal

DPP features DmNM
l .

TaggedPSpeech recordings from the HC and PD patients were obtained from the database provided by Orozco-Arroyave

et al. (2014). This database contains speech recordings of 50 patients with PD and 50 HCs sampled at 44.1 kHz with

16 resolution-bits. The recordings were captured in noise controlled conditions, in a sound proof booth. All of the

speakers are balanced by gender and age. All of the patients were diagnosed and labeled by neurologist experts. The

speech samples were recorded with the patients in the ON-state, i.e., no more than 3 h D25X Xafter the morning medication.

None of the people in the HC group has a history of symptoms related to PD or any other kind of neurological disor-

der. The HC and PD data was used for estimation of parkinsonian DPP features DmP
l . It is worth to note

that the training data of phonological analyser contains English recordings, whereas the HC and PD data contain

Columbian-Spanish recordings. It is assumed that phonological features are language independent, and in addition,

Cernak et al. (2016) showed effective cross-language usage of phonological posteriors, for English training data and

French evaluation data, and vice versa.

TaggedPPD data contains several different speech tasks comprising of isolated and running speech: 24 isolated words, the

‘pataka‘ speech task consisting of repeating /pataka,petaka,pakata/ speech production, 10 sentences, one read text

with 36 words, and a monologue with an average duration of 44.86s. All data was used for experiments described in

Section 5.

4.3. Training of phonological analysis

TaggedPThe open-source phonological vocoding platform developed by Cernak and Garner (2016) was used to perform

phonological analysis and synthesis. Briefly, the platform is based on cascaded speech analysis and synthesis that

works internally with the phonological speech representation. In the phonological analysis part, phonological poste-

riors are estimated directly from the speech signal by DNNs. Binary (Yu et al., 2012) or multi-valued classification

(Stouten and Martens, 2006; Rasipuram and Magimai.-Doss, 2011) may be used. In the latter case, the phonological

classes are grouped together based on place or manner of articulation. The binary classification approach is used in

this work, and thus each DNN determines the probability of a particular phonological class.

TaggedPTo train the DNNs for phonological analysis, a phoneme-based automatic speech recognition system is first

trained using Mel frequency cepstral coefficients (MFCC) as acoustic features. The phoneme set comprises 40 pho-

nemes (including silence) defined by the CMU pronunciation dictionary. The three-state, cross-word triphone
Please cite this article as: M. Cernak et al., Characterisation of voice quality of Parkinson’s disease using

differential phonological posterior features, Computer Speech & Language (2017), http://dx.doi.org/10.1016/j.
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TaggedPmodels were trained with the HMM-based speech synthesis system (HTS) variant (Zen et al., 2007) of the Hidden

Markov Model Toolkit (HTK) on the 90% subset of the WSJ data. The remaining 10% subset was used for cross-

validation. The triphone models are tied with decision tree state clustering based on the minimum description length

(MDL) criterion (Shinoda and Watanabe, 1997). The MDL criterion allows an unsupervised determination of

the number of states. The trained model had 12685 tied states, and each is modeled with a Gaussian mixture model

consisting of 16 Gaussians.

TaggedPThe acoustic models were used to get phonetic alignment. Each phoneme was mapped to the 13 SPE phonological

classes or the one silence class, and thus 14 DNNs were trained as phonological/silence analysers using the frame

alignment with a particular phonological/silence label scheme that took two binary values: the phonological/silence

class exists for the aligned phoneme or not. In other words, the two DNN outputs correspond to the target class vs.

the rest.

TaggedPSome classes might seem to have unbalanced training data; for example, the two labels for the nasal class are

associated with the speech samples from just 3 nasal phonemes /m/, /n/, and /N/, and with the remaining 36 (non-

nasal) phonemes. However, this split is necessary to appropriately train a discriminative classifier, as all the remain-

ing phonemes convey information about all different phonological classes. Each DNN was trained on the whole

training set. Several DNN sizes were tested, from 3 to 6 hidden layers with 500 D26X X�2000 neurons. Finally, the selected

size of the DNNs was 351 £ 1024 £ 1024 £ 1024 £ 2 neurons, is a balance between the training time and the per-

formance. Sigmoid activation functions were used in the hidden layers. The input feature vectors consisted of Energy

plus 12 MFCC (13 parameters) with the first and second time derivatives. The temporal context from 7 to 11 succes-

sive frames was tested with no particular performance increase, so the temporal context of 9 frames was used for the

training.

TaggedPThe parameters were initialis D27X Xed using deep belief network pre-training following the single-step contrastive diver-

gence (CD-1) procedure of Hinton et al. (2006). The DNNs with the softmax output function were then trained using

a mini-batch based stochastic gradient descent algorithm with the cross-entropy cost function of the KALDI toolkit

(Povey et al., 2011).

5. Results

5.1. Analysis of non-modal phonation

TaggedPFig. 1a shows the analysis of the read-VQ evaluation data. Table 2 shows the results of further statistical analysis

performed by using the two-sample t-test without assuming equal variance, that was carried out to study the differen-

ces between speech with modal and non-modal phonations. The significance of the test also allows for the determina-

tion of invariant phonological features, listed in Table 2.

TaggedPAccording to Table 2, the [Strident] phonological feature is more invariant � “resistant” � to non-modal phona-

tion, whereas the [Nasal], [Voice], [Anterior] and [Consonantal] features are heavily impacted (they are not invariant

for any phonation type). The [Strident] feature is significantly different only in creaky phonation, which indicates its

usefulness, for example, in creaky voice detection. On the contrary, the invariant [Tense] feature might indicate

harsh, and the invariant [Low] feature may indicate breathy phonation.

TaggedPThe number of invariant features also indicates the impact of non-modal phonation on phonological features.

While breathy, creaky and tense phonations keep 4 invariant features, harsh and falsetto phonation keep only 2

invariant features.

5.2. Analysis of Parkinsonian speech

TaggedPFig. 1b shows the analysis of the HC and PD non-silence speech data: 10 ms framed 805,511 phonological poste-

rior vectors of the HC group, and 10 ms framed 784,128 vectors of the PD group.

TaggedPStatistical analysis using the two-sample t-test, without assuming equal variances, of the differences between HC

and PD speech, resulted into the only invariant [Consonantal] feature with p ¼ 0:1029; which is in contradiction

with non-modal analysis above, where the [Consonantal] feature was significantly different between modal and non-

modal phonations. PD speech exhibited higher values of the [Nasal], [Voice] and [High] features, and lower values

of the [Back], [Low], and [Round] features. Validation of these findings is discussed further in Section 5.3.
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Table 1

Statistical significance (p-values) of difference between mmodal
kl and mnon�modal

kl for k2K ¼ 13 SPE features

andl2L ¼ 5 non-modal phonations. For of the level of significance a ¼ 0:001; the bold items represent the

invariance of a particular pair of the SPE feature and non-modal phonation, i.e., the SPE features unaffected

by non-modal phonations, where statistical significance of differences isp > a. The other items shown by ‘�’

represent the SPE features affected by non-modal phonation, with significancep< a.

SPE/Phonation Breathy Creaky Tense Harsh Falsetto

Continuant � 0.0042 � � �
High 0.0958 0.0267 � � �
Nasal � � � � �
Back 0.8261 � 0.1308 � �
Vocalic � 0.5948 � � 0.6657

Round � 0.0031 0.3114 � �
Tense � � � 0.0012 �
Strident � � 0.0251 0.0208 0.2198

Voice � � � � �
Coronal 0.2413 � 0.0041 � �
Low 0.2902 � � � �
Anterior � � � � �
Consonantal � � � � �

Table 2

The impact of non-modal phonation on phonological features, measured as a positive (þ) or

negative (�) difference between the mean phonological posteriors of speech with modal phona-

tion, and the mean phonological posteriors with non-modal phonation. The three features with

the greatest differences are listed. Invariance is concluded based on statistics in Table 1.

Phonation Invariant features Most different features

Breathy High, Back, Coronal, Low �Vocalic,�Tense, þNasal

Creaky Continuant, High, Vocalic, Round �Coronal,�Consonantal,�Nasal
Tense Back, Round, Strident, Coronal þLow, þVocalic, þContinuant

Harsh Strident, Tense þLow,�High, þVocalic

Falsetto Strident, Vocalic �Consonantal,�Coronal,�Anterior
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TaggedPHaving the statistics of mean DPP features, we calculated Euclidean distances using Eq. (3) between parkinsonian

DPP DmP (visualisD28X Xed at right of Fig. 1b), and L non-modal DPP DmNM
l . Table 3 lists obtained Euclidean distances.

As said in Section 1, non-modal phonation modes are contrastive against modal phonation modes, in other words,

they are di-similar. The ql quantities represent the similarity measures, so to be used for characterisation of Parkinso-

nian non-modal phonation, they are turned into di-similarity measures by calculating their inverse, 1/ql. Finally, we

assume that each of the non-modal phonation partially (relatively) contributes to the perceived overall non-modal

phonation.

TaggedPFig. 2 shows composition of voice quality in parkinsonian speech. It might be interpreted as: a voice of an average

patient with Parkinson’s disease contains “a voice quality spectrum” composed of 30% breathy voice, 23% creaky
Table 3

Euclidean distances ql between non-modal and Parkinsonian

DPP features. As Euclidean distance is a similarity measure,

whereby smaller is more similar, we calculate an inverse of

the Euclidean distance to plot composition of non-modal

voice quality in Parkinsonian speech in Fig. 2.

Voice quality ql 1/ql

Breathy 0.0935 10.69

Creaky 0.1240 8.06

Tense 0.1417 7.06

Falsetto 0.1904 5.25

Harsh 0.2321 4.31
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TaggedPvoice, 20% tense voice, 15% falsetto voice and 12% harsh voice, where about 75% of overall voice quality on aver-

age is composed of breathy, creaky and tense phonations.

5.3. Validity

TaggedPOates (2009) describes basic pathological phonations as a breathy voice that arises from incomplete glottal clo-

sure and/or the presence of a posterior glottal chink, a rough voice that arises from irregular vocal fold vibration pat-

terns, and a strained or pressed voice that is due to excess laryngeal muscle tension. Barsties and De Bodt (2015)

review three ratings schemes that are the most frequently reported and accepted: (i) the GRBAS scale that includes

R for roughness, B for breathiness and S for strain; (ii) the CAPE-V that includes in the standard analysis the same

parameters as the GRBAS; and (iii) the RBH scale that focuse on only three dimensions: roughness, breathiness, and

hoarseness.

TaggedPWe objectively estimated that the majority of the VQ spectrum of PD is composed of 30% breathy voice,

23% creaky voice, 20% tense voice; all the three most-important VQs expected/evaluated by perceptual

assessment of hypokinetic dysarthria in PD. Breathy phonation causes breathiness, creaky phonation contrib-

utes significantly to roughness, and tense phonation results into vocal strain (known also as muscle tension

dysphonia).

TaggedPSeverity of dysarthria in PD is also rated by the the Frenchay Dysarthria Assessment (FDA-2) score (Enderby,

1983; Enderby and Palmer, 2008). The assessment includes 28 relevant perceptual dimensions of speech, namely

related to the following dimensions:

TaggedP� Respiration: noting running out of breath when speaking, and breathy voice.
P

di

cs
TaggedP� L
aryngeal: noting weather the patient has clear phonation with the vocal folds, without huskiness.
TaggedP� T
ongue: noting accurate tongue movements (positions) with correct articulation.
TaggedP� P
alate: noting nasal resonance in spontaneous conversation, without hypernasality or nasal emission.
TaggedP� L
ips: observing the movements of lips in conversation, noting correct shape of lips.

TaggedPWhile the first dimension is similar to the perceptual assessment of the three rating schemes described above, fur-

ther dimensions are more related to articulation. According to Fig. 1b, PD speech data exhibits:

TaggedP1. Greater values of the [Voice] and [Nasal] phonological features that might be related to the Laryngeal and Palate
le

f

l

dimensions. It can be interpreted as more analysed speech frames having higher values of these phonological
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TaggedPfeatures, as compared to HC speech data. Thus, patients produced more nasal or voiced sounds compared to

HCs.
TaggedP2.
 Lower values of the [Round] that might be related to the Lips dimension (i.e., patients produced less rounded

sounds).
TaggedP3.
 Lower [Back] and [Low], and greater [High] vales that might be related to Tongue dimension (i.e., the patients

articulated more central speech sounds, that might indicate weaker articulation of PD patients).
TaggedP5.3.1. Prediction of laryngeal FDA scores

TaggedPTo validate usefulness of the proposed characterisation of the VQ of Parkinson’s disease, we investigated

using the ql features for the prediction of the dysarthria level according to a modified version of the Frenchay

assessment score. This perceptual evaluations includes the following aspects of speech: respiration, lips move-

ment, palate/velum movement, larynx, tongue, and intelligibility. We hypothesis D 2 9X Xed that the DPP features

should be useful for prediction of the FDA scores related particularly to the larynx, which impacts the VQ

the most.

TaggedPThe baseline features include articulation and prosody-based features, which are concatenated to form a

724-dimensional feature vector per utterance (Orozco-Arroyave, 2016; Vasquez-Correa et al., 2017). The

articulation-based features includes 86 descriptors such as the energy content distributed in 22 Bark bands in

the transition from voiced to unvoiced segments (22 descriptors), and from unvoiced to voiced segments

(22 descriptors) (Orozco-Arroyave et al., 2016). The feature set is augmented with the first and second formant

frequencies, and 12 MFCC with their derivatives. The extracted features are grouped and four functionals are

computed (mean, standard deviation, skewness, and kurtosis), forming a 344-dimensional feature vector per

utterance. The second feature set contains prosody-based features computed with the Erlangen prosody module

(Zeiler et al., 2006), using voiced segments as speech unit. The set of features comprises a total of 95 features.

19 of them are based on duration and include among others the number and the length of voiced frames, and

duration of pauses. 36 of the features are based on the F0 contour, including the mean, standard deviation, jitter,

and others. The energy D3 0X X-based features include measures of the energy within the voiced frames, shimmer, posi-

tion of the maximum energy, and others. The features are grouped into one feature vector and four functionals

are also computed: mean, standard deviation, maximum, and minimum, forming a 380-dimensional feature

vector per utterance.

TaggedPThe evaluated features consisted of the concatenated baseline and ql features calculated per speaker. All 50 PD

speakers were considered in this evaluation. For the prediction task, we used the same Super Vector Regression as

described by Vasquez-Correa et al. (2017), using a leave-one-subject-out (LOSO) cross-validation. The performance

is evaluated using the Spearman’s correlation coefficient between the predicted scores and the real scores. The real

scores were obtained by three professional phoniatricians, with the inter-rater reliability of 0.86 measured as the

average Spearman’s correlation coefficient obtained between all the evaluators.

TaggedPTable 4 shows the correlation achieved with the baseline and the ql features. Improvements are obtained for the

monologue and reading speech tasks, of 3% and 16%, respectively, whereas no improvement is obtained with

the pataka speech task. The results imply that the proposed ql features depend on statistics (mk as the mean values of

phonological probabilities), and better results are obtained with more observed (recorded) data. For example, while

the pataka tasks contain speech samples with repeated single word, the read text task includes speech samples of

36 spoken words.
Table 4

The Spearman’s correlation coefficients between the real and predicted

modified FDA scores related to the larynx. Median values are calcu-

lated for the correlations with the three evaluators. Results obtained

for the three sub-sets of the PD data (see Section 4.2) are reported.

Speech task Baseline features Proposed features

Pataka 0.56 0.56

Read text 0.39 0.47

Monologue 0.55 0.57
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6. Conclusions

TaggedPThe paper has proposed the characterisation of voice quality (VQ) applied to pathological speech in PD. Often,

the analysis of pathological speech is limited by available data, and advanced deep machine learning techniques can-

not be fully applied. The lack of proper perceptual labels of pathological speech adds further complication. There-

fore, the proposed characterisation learns statistics from healthy speech data that is more widely available, and

calculates similarity with disordered speech by using the Euclidean distance.

TaggedPThe results obtained by DPP features have been validated by matching the obtained most significant, non-modal

phonation types with evaluating parameters of the perceptual assessments. In addition, DPP features of PD have

been interpreted by the Frenchay assessment. This interpretation ability can be directly used in clinical assessment.

TaggedPA drawback of the presented experimental study was in missing VQ perceptual labels of PD data. To the authors’

knowledge, the used PD database is the biggest open-source database available, containing both isolated and con-

nected speech, and was selected primarily for its size. By missing perceptual labels, validation of the proposed VQ

characterisation thus has been done on all speakers focusing on differentiating HC and PD speech, and its direct

application in diagnosis and therapy is limited. In future, we plan to obtain PD data with labeled VQ, and validate

the VQ characterisation on individual patients, looking for example for regression of the perceptual scores.

Acknowledgements

TaggedPThe work reported here was partially carried out during the 2016 Jelinek Memorial Summer Workshop on Speech

and Language Technologies, which was supported by Johns Hopkins University via DARPA LORELEI Contract D31X Xno.

HR0011-15-2-0027, and gifts from Microsoft, Amazon, Google, and Facebook. It was also partially supported by

CODI from Universidad de Antioquia, project 2015-7683, and COLCIENCIAS project # 111556933858. X X

References

TaggedPAnderson, R.C., Klofstad, C.A., Mayew, W.J., Venkatachalam, M., 2014. Vocal fry may undermine the success of young women in the labor

market. PloS One 9 (5), e97506+. doi: 10.1371/journal.pone.0097506.

TaggedPAronson, A.E., Bless, D., 2011. Clinical Voice Disorders. Thieme, New York.

TaggedPAwan, S.N., Roy, N., Dromey, C., 2009. Estimating dysphonia severity in continuous speech: application of a multi-parameter spectral/cepstral

model. Clin. Linguist. Phon. 23 (11), 825–841.

TaggedPBangayan, P., Long, C., Alwan, A.A., Kreiman, J., Gerratt, B.R., 1997. Analysis by synthesis of pathological voices using the Klatt synthesizer.

Speech Commun. 22 (4), 343–368. doi: 10.1016/s0167-6393(97)00032-0.

TaggedPBarsties, B., De Bodt, M., 2015. Assessment of voice quality: current state-of-the-art. Auris Nasus Larynx 42 (3), 183–188.

TaggedPBauer, V., Aleri�c, Z., Jan�ci�c, E., Miholovi�c, V., 2011. Voice quality in Parkinson’s disease in the Croatian language speakers. Coll Antropol.

35 (2), 209–212.

TaggedPBhuta, T., Patrick, L., Garnett, J.D., 2004. Perceptual evaluation of voice quality and its correlation with acoustic measurements. J. Voice 18 (3),

299–304.

TaggedPCernak, M., Asaei, A., Honnet, P.-E., Garner, P.N., Bourlard, H., 2016. Sound pattern matching for automatic prosodic event detection. In: Pro-

ceedings of Interspeech, pp. 170–174.

TaggedPCernak, M., Benus, S., Lazaridis, A., 2017a. Speech vocoding for laboratory phonology. Comput. Speech Lang. 42, 100–121.

TaggedPCernak, M., Garner, P.N., 2016. PhonVoc: a phonetic and phonological vocoding toolkit. In: Proceedings of Interspeech. San Francisco, CA, USA,

pp. 988–992.

TaggedPCernak, M., N€oth, E., Rudzicz, F., Christensen, H., Orozco-Arroyave, J.R., Arora, R., Bocklet, T., Chinaei, H., Hannink, J., Nidadavolu, P.S.,

Vasquez, J.C., Yancheva, M., Vann, A., Vogler, N., 2017. On the impact of non-modal phonation on phonological features. In: Proceedings of

International Conference on Acoustics, Speech and Signal Processing, ICASSP. IEEE.

TaggedPCernak, M., Potard, B., Garner, P.N., 2015. Phonological vocoding using artificial neural networks. In: Proceedings of International Conference on

Acoustics, Speech and Signal Processing, ICASSP. IEEE, pp. 4844–4848.

TaggedPChomsky, N., Halle, M., 1968. The Sound Pattern of English. Harper & Row, New York, NY.

TaggedPDarley, F.L., Aronson, A.E., Brown, J.R., 1969. Differential diagnostic patterns of dysarthria. J. Speech Lang. Hear. Res. 12 (2), 246–269.

TaggedPDrugman, T., Kane, J., Gobl, C., 2014. Data-driven detection and analysis of the patterns of creaky voice. Comput. Speech Lang. 28 (5), 1233–

1253. doi: 10.1016/j.csl.2014.03.002.

TaggedPEnderby, P.M., 1983. Frenchay Dysarthria Assessment. College Hill Press.

TaggedPEnderby, P.M., Palmer, R., 2008. FDA-2: Frenchay Dysarthria Assessment: Examiner’s Manual. Pearson.

TaggedPGarofolo, J.S., Lamel, L.F., Fisher, W.M., Fiscus, J.G., Pallett, D.S., 1993. Darpa Timit Acoustic-phonetic Continous Speech Corpus CD-ROMX X.

NASA STI/Recon technical report 93.

TaggedPHansen, J.H., Hasan, T., 2015. Speaker recognition by machines and humans: a tutorial review. IEEE Signal Process. Mag. 32 (6), 74–99.
Please cite this article as: M. Cernak et al., Characterisation of voice quality of Parkinson’s disease using

differential phonological posterior features, Computer Speech & Language (2017), http://dx.doi.org/10.1016/j.

csl.2017.06.004

http://dx.doi.org/10.1371/journal.pone.0097506
http://dx.doi.org/10.1016/s0167-6393(97)00032-0
http://dx.doi.org/10.1016/j.csl.2014.03.002
http://dx.doi.org/10.1016/j.csl.2017.06.004
http://dx.doi.org/10.1016/j.csl.2017.06.004


363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

ARTICLE IN PRESS
JID: YCSLA [m3+;June 19, 2017;16:06]

12 M. Cernak et al. / Computer Speech & Language xxx (2017) xxx-xxx
TaggedPHanson, H.M., 1997. Glottal characteristics of female speakers: acoustic correlates. J. Acoust. Soc. Am. 101 (1), 466–481.

TaggedPHinton, G.E., Osindero, S., Teh, Y.W., 2006. A fast learning algorithm for deep belief nets. Neural Comput. 18 (7), 1527–1554. doi: 10.1162/

neco.2006.18.7.1527.

TaggedPHirano, M., 1981. Clinical Examination of Voice. Disorders of human communication, 5. Springer.

TaggedPHolmes, R.J., Oates, J.M., Phyland, D.J., Hughes, A.J., 2000. Voice characteristics in the progression of Parkinson’s disease. Int. J. Lang. Com-

mun. Disord. 35 (3), 407–418.

TaggedPKane, J., 2012. Tools for Analysing the Voice. Ph.D. thesis. Trinity College Dublin, Dublin.

TaggedPKlatt, D.H., Klatt, L.C., 1990. Analysis, synthesis, and perception of voice quality variations among female and male talkers. J. Acoust. Soc. Am.

87 (2), 820–857.

TaggedPKreiman, J., Gerratt, B.R., Kempster, G.B., Erman, A., Berke, G.S., 1993. Perceptual evaluation of voice qualityreview, tutorial, and a framework

for future research. J. Speech Lang. Hear. Res. 36 (1), 21–40.

TaggedPLadefoged, P., Johnson, K., 2014. A Course in Phonetics. 7th ed. Cengage Learning.

TaggedPLaver, J., 1980. The Phonetic Description of Voice Quality. Cambridge Studies in Linguistics. Cambridge University Press

TaggedPLittle, M.A., McSharry, P.E., Hunter, E.J., Spielman, J., Ramig, L.O., et al., 2009. Suitability of dysphonia measurements for telemonitoring of

Parkinson’s disease. IEEE Trans. Biomed. Eng. 56 (4), 1015–1022.

TaggedPLittle, M.A., McSharry, P.E., Roberts, S.J., Costello, D.A., Moroz, I.M., 2007. Exploiting nonlinear recurrence and fractal scaling properties for

voice disorder detection. BioMed. Eng. OnLine 6 (1), 23.

TaggedPMalyska, N., 2008. Analysis of Nonmodal Glottal Event Patterns with Application to Automatic Speaker Recognition. Ph.D. thesis. Harvard Uni-

versity �MIT Division of Health Sciences and Technology, USA.

TaggedPMalyska, N., Quatieri, T.F., Dunn, R.B., 2011. Sinewave representations of nonmodality. In: Proceedings of Interspeech, pp. 69–72.

TaggedPMaryn, Y., De Bodt, M., Roy, N., 2010. The acoustic voice quality index: toward improved treatment outcomes assessment in voice disorders.

J. Commun. Disord. 43 (3), 161–174.

TaggedPMaryn, Y., Roy, N., De Bodt, M., Van Cauwenberge, P., Corthals, P., 2009. Acoustic measurement of overall voice quality: a meta-analysis.

J. Acoust. Soc. Am. 126 (5), 2619–2634.

TaggedPOates, J., 2009. Auditory-perceptual evaluation of disordered voice quality. Folia Phoniatr. Logop. 61 (1), 49–56.

TaggedPOrozco-Arroyave, J.R., 2016. Analysis of Speech of People with Parkinson’s Disease. 41. Logos Verlag Berlin GmbH.

TaggedPOrozco-Arroyave, J.R., Arias-Londoeno, J.D., Bonilla, J.F.V., Gonzalez-R�ativa, M.C., N€oth, E., 2014. New Spanish speech corpus database for the anal-

ysis of people suffering from Parkinson’s disease. In: Proceedings of Conference on Language Resources and Evaluation, LREC, pp. 342–347.

TaggedPOrozco-Arroyave, J.R., V�asquez-Correa, J.C., H€onig, F., Arias-Londoeno, J.D., Vargas-Bonilla, J.F., Skodda, S., Rusz, J., N€oth, E., 2016. Towards
an automatic monitoring of the neurological state of the Parkinson’s patients from speech. In: Proceedings of the 41st International Conference

on Acoustic, Speech, and Signal Processing, ICASSP.

TaggedPPaul, D.B., Baker, J.M., 1992. The design for the Wall Street Journal-based CSR corpus. In: Proceedings of the Workshop on Speech and Natural

Language. Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 357–362. doi: 10.3115/1075527.1075614.

TaggedPPodesva, R.J., 2007. Phonation type as a stylistic variable: the use of falsetto in constructing a persona. J. Socioling. 11 (4), 478–504.

TaggedPPovey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J.,

Stemmer, G., Vesely, K., 2011. The Kaldi speech recognition toolkit. In: Proceedings of Automatic Speech Recognition & Understanding,

ASRU. IEEE SPS. IEEE Catalog No.: CFP11SRW-USB.

TaggedPRasipuram, R., Magimai.-Doss, M., 2011. Integrating articulatory features using Kullback�Leibler divergence based acoustic model for phoneme

recognition. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing, ICASSP. IEEE, pp. 5192–5195. doi:

10.1109/icassp.2011.5947527.

TaggedPRusz, J., Cmejla, R., Ruzickova, H., Ruzicka, E., 2011. Quantitative acoustic measurements for characterization of speech and voice disorders in

early untreated Parkinson’s disease. J. Acoust. Soc. Am. 129 (1), 350–367.

TaggedPSan Segundo, E., Tsanas, A., G�omez-Vilda, P., 2017. Euclidean distances as measures of speaker similarity including identical twin pairs:

a forensic investigation using source and filter voice characteristics. Forensic Sci. Int. 270, 25–38.

TaggedPSchuller, B., Batliner, A., 2013. Computational Paralinguistics: Emotion, Affect and Personality in Speech and Language Processing. Wiley.

TaggedPShinoda, K., Watanabe, T., 1997. Acoustic modeling based on the MDL principle for speech recognition. In: Proceedings of Eurospeech, pp. I–

99�102.

TaggedPStouten, F., Martens, J.-P., 2006. On the use of phonological features for pronunciation scoring. In: Proceedings of International Conference on

Acoustics, Speech and Signal Processing, ICASSP. IEEE, p. I. doi: 10.1109/icassp.2006.1660024.

TaggedPTitze, I.R., 1995. Workshop on Acoustic Voice Analysis: Summary Statement. National Center for Voice and Speech.

TaggedPVasquez-Correa, J.C., Orozco-Arroyave, J.R., Arora, R., N€oth, E., Dehak, N., Christensen, H., Rudzicz, F., Bocklet, T., Cernak, M., Chinaei, H.,

Hannink, J., Nidadavolu, P.S., Yancheva, M., Vann, A., Vogler, N., 2017. Multi-view representation learning via GCCA for multimodal analy-

sis of Parkinson’s disease. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing, ICASSP.

TaggedPWuyts, F.L., De Bodt, M.S., Molenberghs, G., Remacle, M., Heylen, L., Millet, B., Van Lierde, K., Raes, J., Van de Heyning, P.H., 2000. The dys-

phonia severity indexan objective measure of vocal quality based on a multiparameter approach. J. Speech Lang. Hear. Res. 43 (3), 796–809.

TaggedPYu, D., Siniscalchi, S., Deng, L., Lee, C.-H., 2012. Boosting attribute and phone estimation accuracies with deep neural networks for detection-

based speech recognition. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing, ICASSP. IEEE SPS.

TaggedPZeiler, V., Adelhardt, J., Batliner, A., Frank, C., N€oth, E., Shi, R.P., Niemann, H., 2006. The prosody module. SmartKom: Foundations of Multi-

modal Dialogue Systems. Springer, pp. 139–152.

TaggedPZen, H., Nose, T., Yamagishi, J., Sako, S., Masuko, T., Black, A., Tokuda, K., 2007. The HMM-based speech synthesis system version 2.0. In:

Proceedings of ISCA Speech Synthesis Workshop, SSW6, pp. 131–136.
Please cite this article as: M. Cernak et al., Characterisation of voice quality of Parkinson’s disease using

differential phonological posterior features, Computer Speech & Language (2017), http://dx.doi.org/10.1016/j.

csl.2017.06.004

http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.3115/1075527.1075614
http://dx.doi.org/10.1109/icassp.2011.5947527
http://dx.doi.org/10.1109/icassp.2006.1660024
http://dx.doi.org/10.1016/j.csl.2017.06.004
http://dx.doi.org/10.1016/j.csl.2017.06.004

	Characterisation of voice quality of Parkinson´s disease using differential phonological posterior features
	1. Introduction
	2. Voice quality of Parkinson´s disease
	2.1. Non-modal (healthy) phonation
	2.2. Pathological (Parkinsonian) phonation

	3. Differential phonological posteriors
	4. Experimental setup
	4.1. Training data
	4.2. Evaluation data
	4.3. Training of phonological analysis

	5. Results
	5.1. Analysis of non-modal phonation
	5.2. Analysis of Parkinsonian speech
	5.3. Validity
	5.3.1. Prediction of laryngeal FDA scores


	6. Conclusions
	Acknowledgements
	References


