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Abstract. Segmentation is one of the most important parts of medical
image processing. Manual segmentation is very cumbersome and time-
consuming. Fully automatic segmentation approaches require a large
amount of labeled training data and may fail in difficult cases. In this
paper, we propose a new method for 2-D segmentation and 3-D inter-
polation. The Smart Brush functionality quickly segments the ROI in a
few 2-D slices. Given these annotated slices, our adapted formulation of
Hermite Radial Basis Functions reconstructs the 3-D surface. Effective
interactions with less number of equations accelerate the performance
and therefore, a real-time and an intuitive, interactive segmentation can
be supported effectively. The proposed method was evaluated on 12 clin-
ical 3-D MRI data sets from individual patients and were compared to
gold standard annotations of the left ventricle from a clinical expert. The
2-D Smart Brush resulted in an average Dice coefficient of 0.88±0.09 for
individual slices. For the 3-D interpolation using Hermite Radial Basis
Functions an average Dice coefficient of 0.94 ± 0.02 was achieved.
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1 Introduction

A great deal of effort has gone into interactive segmentation. Many segmenta-
tion techniques have been developed such as Intelligent Scissors, Graph Cuts,
and Random Walker [9,3,5]. There are two important applications that these
techniques can speed up. First, manual segmentation is still widespread in clin-
ical routine and which is arduous. Second, the training of machine learning
methods for segmentations needs ground truth annotations that have to be gen-
erated manually. In particular, deep learning is known to require huge amounts
of annotated data. Therefore, the challenge is to design a fast, generic and easy
segmentation tool that allows to generate clinical segmentations as well as fast
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Fig. 1. Segmentation pipeline. The first image from left to right shows the 3-D vol-
ume as input. In the next step, single slices are segmented using the Smart Brush
functionality. Third, the control points of the contours are extracted. Fourth, the 2-D
and 3-D normal vectors are computed for the Hermite Radial Basis Function (HRBF)
interpolation. In the final image, the interpolated surface is visualized.

ground truth annotations. The most related 2-D segmentation technique is a
Smart Brush tool [7,10]. However, the drawback of this method is that it does
not control the boundary smoothness [2].

In surface reconstruction, there is a vast literature which is mainly grouped
into direct meshing and implicit approaches. Nowadays, those methods based
on implicit surface reconstruction have gained more and more attention. In this
approach, first a signed scalar field f(·) is obtained. The scalar value of this
scalar field is zero at all scattered points (here control points p), f(p) = 0 and
negative/positive for inside/outside of the surface [8]. Then, the desired surface is
reconstructed by extracting the zero-level set of the mentioned field. In previous
related work [6], this filed f(·) is computed in a bilateral domain where the
spatial and intensity range domain are joined. The interpolation is done using
the Radial Basis Function (RBF) with a Hermite data type which incorporates
normals and gradients of the scalar field directly, ∇f(p) = n.

In this work, we propose a new formulation of surface reconstruction which
is independent of the 3-D intensity gradient information. The interpolation is
mainly based on 2-D normal vectors obtained from the segmented slices in 2-D.
Hence, a Smart Bush formulation is introduced which can handle medical ac-
quisitions with higher noise level and ambiguous boundaries using a Gaussian
Mixture Model (GMM). Furthermore, 3-D normal vectors are estimated for the
intersections of annotated planes from different orientations. From this it follows,
that the surface is reconstructed using both 2-D and 3-D normal vectors. In con-
trast to previous implicit methods, this combination can be applied to images
with a high noise level, as it is not dependent on any intensity information or
well defined borders.

2 Methods

Our approach combines advantages of semi-automatic segmentation methods as
well as the user’s high-level anatomical knowledge to generate segmentations
quickly and accurately with fewer interactions. Using our method, the user first
segments a few slices with the Smart Brush, then the scattered data points are
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extracted by computing the 2-D gradient information of the annotated slices.
Applying our new formulation of Hermite Radial Basis Function (HRBF), the
desired surface is reconstructed. In Fig. 1 the segmentation pipeline is illustrated.

2.1 Smart Brush

The 2-D segmentation functionality classifies pixels into foreground and back-
ground based on intensity. Initially, a small initial area in the foreground has
to be segmented manually by the user. The mean intensity of the initial area is
required for the smart brush functionality.

When the user selects a new ROI with the brush, an unsupervised GMM with
two components is fitted for the ROI. A threshold for pixel-wise classification
is derived as the mean of the two mixture component means. The pixels of
the component whose mean is closer to the mean intensity of the initial area
are classified as foreground. Finally, to reduce false positives, the morphological
connectivity of each pixel in the ROI to the initial ROI is checked using a 4-
connected structuring element. This way, pixels that has the same intensity value
but are not connected to the previous segmentation are removed.

2.2 Control Point Extraction

We assume that multiple slices are segmented in axial, sagittal, and coronal
orientation using the Smart Brush functionality. First, the contours are extracted
from the segmentations. Then, control points (CPs) are computed from the
contours adaptively according to the shape of the object.

The contour is sampled equidistantly with a predefined sampling size δ ∈ Z.
The number of control points ne ∈ Z is based on the contour length lc ∈ Z and
computed as np = ⌊ lc

δ
⌋. Furthermore, nc ∈ Z convexity defect points, where the

contour has the maximum distance to its convex hull, are added. To increase
the accuracy of the 3-D interpolation for complex objects, the number of CPs is
increased at rough areas. Therefore, the local curvature κ ∈ R is checked for all
CPs and additional points are added in case of roughness. To compare curvature
values, a reference quantity r ∈ R (global roughness) is defined which is the ratio
of the convex hull area Ah and the entire curve area Ac, r = Ac/Ah [1]. New
CPs are added at a certain distance to the investigated CP, if the criterion

κ

r
> θr (1)

is fulfilled, where the threshold θr ∈ R is obtained heuristically. The number of
additional CPs due to curvature is denoted as nκ. The total number of CPs is
N = ne + nc + nκ. Fig. 2 depicts two methods of control point extraction.

The subsequent interpolation requires Hermite data, i.e., function values and
their derivatives. In this case, we need the normal vector for each control point.
The first derivative of the contour approximates the tangent vector of the curve.
Having the 2-D tangent vector t = (dx, dy)

T , the orthogonal normal vector is
obtained by n = (−dy, dx)

T .
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(a) (b)

Fig. 2. (a) A rough surface with initial equidistant points in red and convexity defect
points in blue. (b) A rough surface with increased number of points in green.

2.3 3-D Interpolation

A new formulation of HRBF is introduced that allows to reconstruct the 3-D
surface based on scattered control points and their associated 2-D normal vec-
tors only. Assume that N Hermite data points {(pi,ni)|pi ∈ R

3,ni ∈ R
2, i =

1, ..., N} are generated from Section 2.2. In RBF interpolation, the final seg-
mentation is given as the zero level set of a scalar field. The scalar field f is
formulated as

f(x) =

N
∑

i=1

αiϕ (‖x− pi‖)− βT
i · s2Di (∇ϕ (‖x− pi‖)) + g (x) , (2)

where g(x) is a low-degree polynomial, s2Di (x) is a function that selects the
2-D gradient direction that is available for control point i, and the RBF coef-
ficients αi ∈ R, βi ∈ R

2. According to previous work [6], the commonly used
tri-harmonic kernel ϕ (t) = t3 with a linear polynomial g(x) = aTx + b yields
adequate results in terms of shape aesthetics. To determine the coefficients αi

and βi, constraints are derived from the CPs [6]

f (pi) = 0 (3)

s2Di (∇f (pi)) = ni . (4)

In addition, the orthogonality conditions
∑N

i=1
αi = 0 and

∑N

i=1
αis

2D
i (pi) +

βi = 0 have to be fulfilled. This yields a linear system of equations of 3(N +1) ·
3(N + 1) order which can be denoted with a block form as
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where for CPs with Hermite data based on 2-D normals, the blocks Ki,j , Si ∈
R

3×3 and vectors s, wi and ci are defined as:

Ki,j =

(

ϕ(‖pi − pj‖) −s2Di (∇ϕ(‖pi − pj‖))
T

s2Di (∇ϕ(‖pi − pj‖)) −∇T s2Di (∇ϕ(‖pi − pj‖))

)

,

Si =

(

s2Di (pi)
T 1

I 0

)

, s =

(

a

b

)

, wi =

(

αi

βi

)

, ci =

(

0

ni

)

,

(6)

where I ∈ R
2×2 is the identity matrix and ∇T s2Di (∇x) ∈ R

2×2 is the Hessian
of the available 2-D dimensions. There is always a unique solution to the system
of equations if the points pi are pairwise distinct [4,6]. The unknown parameters
αi,βi,a and b can be obtained directly as the matrix is square and non-singular.

However, through the segmentation of several slices from different orienta-
tions, control points can be close together at the intersection of the planes. The
normal vectors of these points, point in a different direction according to the seg-
mented contour. To make the interpolation result even more robust, these points
are combined and a 3-D normal vector is estimated. The merging is performed
with in a certain user defined radius around each intersection area. Hence, the
HRBF interpolation is a combination of 2-D and 3-D normal vectors. Assuming
N CPs with 2-D normals and M CPs with 3-D normal, the extended system of
equations is
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where different color in the matrix implies the points and the corresponding
normal vectors with different dimensionality (3-D blue, 2-D green, mixed purple).

3 Evaluation and Results

The evaluation was performed on 12 MRI data sets. Gold standard annotations
of the left ventricle were provided by a clinical expert. The Dice coefficient was
evaluated as a quantitative score for the segmentation overlap. The 2-D ground
truth annotation was used to assess the 2-D segmentation and the complete
3-D ground truth for the 3-D interpolation scheme. The main problem with
evaluating the Smart Brush is that it inherently involves human interaction.
Therefore, objective testing without human interaction is difficult. To address
this, we mimicked user interactions such as slice selection, mouse movement,
brush size, etc. Iteratively, a 2-D slice was selected and one patch of the ground
truth was used for training. The evaluation of the Smart Brush was performed on
a different patch by computing the Dice coefficient per patch. For evaluation of
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Fig. 3. The evaluation results of the 2-D segmentation result using the Smart Brush.

the 3-D interpolation, we compare our method (A-HRBF) to a reference method
that extracts 3D gradients on the control points based on intensity (HRBF) [6].

The results of the 2-D evaluation of our Smart Brush are depicted in Fig. 3.
For most patients, an average Dice coefficient of around 0.9 is achieved. The
results of the 3-D segmentation are depicted in Fig. 4. For each data set, the
evaluation was performed with a different number of segmented slices per ori-
entation. We evaluated 1, 3, and 5 slices per orientation which means to have
a total number of 3, 9, and 15 slices, respectively. The slice selection was ran-
domly. The same method of control point extraction was used for control point
computation. It can be seen that by increasing the number of slices the Dice
coefficient usually increases slightly. Comparing the different methods, the Dice
coefficient for the proposed A-HRBF is consistently higher than for HRBF.

Our experiments showed that three slices per orientation is sufficient to get a
good segmentation result. Furthermore, in order to achieve more accurate inter-
polation results, the user has to segment those slices which have the maximum
mismatch with the actual ground truth. In fact, for 3-D interpolation, the user se-
lects those slices which are a good representation of the complete volume. Hence,
the actual result of the interpolation is even better than the evaluation result
shows. Fig. 5 depicts the qualitative results of the A-HRBF 3-D interpolation
scheme for one data set.

4 Discussion and Conclusion

In contrast to previous implicit methods for 3-D interpolation [6], this method
can not only be used for high-contrast images, but also for images with high
noise level or other confounding factors due to the independence of intensity
information. The main advantage happens when there is an ambiguous boundary
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(a) HRBF
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(b) A-HRBF

Fig. 4. The 3-D interpolation evaluation results: (a) The HRBF result with average
Dice coefficient of 0.69, 0.63 and 0.69 for 1, 3, and 5 slice per orientation,respectively.
(b) The A-HRBF result with average Dice coefficient of 0.91, 0.95 and 0.96 for 1, 3,
and 5 slice per orientation, respectively.

which only an expert can recognize (e.g. between left ventricle and left atrium).
In this case, normal vector computation fails based on the previous method [6],
while using our method, the normal vectors are orienting properly, see Fig. 6.

We showed that the 3-D interpolation is already quite good with one slice
per orientation. However, this was only evaluated for the left ventricle, which is
a convex object. Considering more complex objects more annotations would be
necessary.

The benefit of the method is that the user can correct the segmentation
result easily by segmenting an additional slice with the maximum mismatch.
Furthermore, no prior knowledge is involved which leads to the ability to generate
any arbitrary segmentation of any 3-D data set, irrespective of image modality,
displayed organ, or clinical application.

Disclaimer: The methods and information presented in this paper are based
on research and are not commercially available.
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