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Abstract—Compared to conventional attenuation imaging,
Talbot-Lau X-ray grating interferometry applied within a poly-
chromatic setup suffers from additional artifacts. Among those
are beam hardening and dispersion effects due to the complex
coupling of different physical effects involved in the image
formation process. In computed tomography these effects lead
to image degradation, such as cupping and streak artifacts,
hampering diagnostic use.

In this paper, we seek to reduce these artifacts in an iterative
reconstruction framework. To this purpose, we define a model
of the polychromatic forward projection that includes prior
knowledge about the physical setup. Using this model we derive
a maximum likelihood algorithm for simultaneous reconstruction
of the attenuation, phase and scatter images.

In our experiments on a synthetic ground-truth phantom, we
compare filtered backprojection reconstruction with the proposed
approach. The proposed method considerably reduces strong
beam hardening artifacts in the phase images, and almost
completely removes these artifacts in the absorption and scatter
images.

Index Terms—X-ray interferometry, Talbot-Lau, beam hard-
ening, iterative reconstruction

I. INTRODUCTION

Over the last decades a great effort was made to un-
derstand imaging modalities exploiting the wave properties
of X-rays [1]–[3]. Among those is Talbot-Lau grating-based
phase-contrast X-ray imaging, which allows for simultaneous
measurement of attenuation, the phase shift that occurs while
traversing the material, and the specimen’s small-angle scatter-
ing properties. Beneficial contrast for medical application was
reported for the differential phase-contrast signal when dif-
ferences in soft-tissue are of importance [4], [5]. Additionally,
the dark field contrast yields complementary information if the
specimen provides highly varying structures on the small scale,
such as lung tissue [6], [7] or porous media like calcification
in mammography [8], [9]. The technique offers great prospects
for future clinical applications, since the setup has proven to
work well when embedded in a conventional X-ray absorption
setup [10], [11].

However, tomographic reconstructions of data from a poly-
chromatic setup suffer from artifacts due to two energy-
dependent factors. The first factor are the energy-dependent
material coefficients [12]–[15], an issue which is the analog
to conventional attenuation X-ray. For attenuation X-ray, this is
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Fig. 1: Sketch of a typical Talbot-Lau interferometer.

a long-standing, much-researched problem [16]–[18]. The sec-
ond factor that is specific to Talbot-Lau interferometers is the
energy-dependence of the interferometer visibility. This leads
to beam hardening and dispersion effects in both phase [12],
[13] and dark-field signals [14], [19]. We will address both
factors in the proposed method to reduce polychromatic arti-
facts.

Bevins et al. and Chabior et al. presented first experimen-
tal evidence of beam hardening in phase-contrast tomogra-
phy [12], [13]. Chabior et al. and Koehler et al. adapted
linearization techniques known from conventional CT [20] to
Talbot-Lau imaging [13], [21], but performed no evaluation
on tomographic data. We are unaware of any beam-hardening
correction that is specifically tailored to Talbot-Lau interfer-
ometers.

For tomographic reconstruction of Talbot-Lau data, Bren-
del et al. and Ritter et al. investigated a maximum-likelihood
algorithm to simultaneously reconstruct attenuation, phase and
scatter images without requiring phase retrieval [22]–[24].
This method can not cope with polychromatic data, because
a monochromatic source was used to model the forward
projection.

Our key contribution is to extend the monochromatic for-
ward model [23], [24] to polychromatic data. The main benefit
of the extended model is that beam-hardening artifacts are im-
plicitly dampened or even completely removed. We show how
prior knowledge can be used to approximate the energy depen-
dence of materials. Furthermore, we use this model to propose
an iterative reconstruction algorithm for polychromatic CT
based on maximum-likelihood techniques [25]. To our knowl-
edge, this is the first work that addresses polychromaticity-
induced artifacts in an iterative reconstruction framework for
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Fig. 2: Red: Reference stepping curve without object, Blue:
Object stepping curve. Each curve is described by three
parameters: The offset N, the phase φ , and amplitude A. The
visibility is then given by V := A

N .

Talbot-Lau imaging.
We validate the reconstruction algorithm with synthetic pro-

jection data of a well-defined phantom. The data reconstructed
by the proposed algorithm are compared to results obtained
through standard filtered backprojection techniques, achieving
a considerable reduction of beam-hardening artifacts.

II. METHODS

We first briefly review the grating-based Talbot-Lau X-ray
interferometer in Sec. II-A. An energy-dependent, yet tractable
physical model is presented in Sec. II-B. The associated
reconstruction algorithm is presented in II-C.

A. Talbot-Lau Grating Interferometer

A Talbot-Lau grating interferometer, shown in Fig. 1, con-
sists of a standard X-ray tube and a detector, and three gratings
G0, G1, G2 between source and detector. The source grating
G0 ensures spatial coherence. The phase grating G1 imprints
a periodic phase offset onto the wave front. At a distance
downstream of G1, this periodic offset leads to the Talbot
effect [26]. The resulting interference pattern is sampled by
stepping the analyzer grating G2.

The stepping data allow to compute three quantities, namely
the mean photon count N, the phase φ , and the overall setup
visibility V , see Fig. 2. In a polychromatic setup, the observed
N, φ and V are integrated over all wavelengths of the energy
spectrum. To obtain absorption, differential phase and dark-
field of a specimen, the images are normalized with reference
acquisitions N0, φ0, V0. These reference images are recorded
from an additional free-field scan.

B. A Physical Model with Energy Dependence

The physical model needs to be carefully chosen. On one
hand, a more expressive model allows a more accurate physical
interpretation of the data. On the other hand, the model has to
remain manageable for the reconstruction algorithm to achieve
convergence. The proposed model presents a tradeoff between
these two aspects.

The desired result of tomographic reconstruction is the
material distribution of a specimen. In the case of Talbot-Lau
tomography, this material distribution has to be inferred from
attenuation, refractive decrement and scattering properties. To
allow for the avoidance of beam-hardening artifacts, we define
the measured quantities in dependence of the energy.

As a starting point, we review established models for
absorption, phase, and scatter per energy for a Talbot-Lau
interferometer [12], [13], [27]. In the energy range between
E = 5keV to E = 120keV, the energy-dependent linear atten-
uation coefficient µ(E) can be approximately decomposed into
the photoelectric cross-section and the Compton scatter,

µ(E) = ρe ·
(

C1
ZC2

E3 +σkn(E)
)

, (1)

where ρe is the electron density, σkn is the Klein-Nishina
approximation for the differential cross-section of scattered
photons. C1 is a scalar that depends on natural constants. C2 is
a scalar that varies only slowly with energy, such that it can be
approximated as C2 ≈ 3 [27]. Equation 1 assumes no K-edge
effects, which is valid for biological tissue in the energy range
of interest.

The phase shift φ(E) of an X-ray with energy E propagating
through matter is given by the integral along the line of sight
l,

φ(E) =
rehc

E

∫
l
ρe(l)dl , (2)

where re denotes the electron radius, h Planck’s constant, and
c speed of light. Talbot-Lau interferometry does not measure
φ(E) directly. Instead, it measures the refraction angle α(E)
proportional to the gradient of the phase-shift, i.e.,

α(E) =
hc

2πE
∂

∂x
φ =

∂

∂x

∫
l
δ (E)dl , (3)

with the refractive element δ (E) given by

δ (E) =
h2c2re

2π

ρe

E2 . (4)

To our knowledge, there exists no full theoretical model for
the energy-dependence of the scatter coefficient σ . Following
the work by Bech et al. [6], we model the scatter coefficient
analogously to the attenuation coefficient.

However, it turns out that a full model in the sense of Eqn. 1
and Eqn. 4 is challenging to reconstruct. Thus, to keep the
model manageable, energy dependence is approximated using
monomials for each coefficient µ,δ ,σ by defining

µ(E) = µ(E0) ·
(

E
E0

)Cµ

, (5)

δ (E) = δ (E0) ·
(

E
E0

)Cδ

, (6)

σ(E) = σ(E0) ·
(

E
E0

)Cσ

. (7)
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CaC2O4 Cσ =-3.7

Fig. 3: Simulation results for the scatter coefficient of different
materials.

Here, the material coefficients µ(E0),δ (E0),σ(E0) are as-
sumed to be known at a given energy E0 and then extrapolated
to arbitrary energies E. The exponents are set to Cµ = −3
, Cδ = −2 according to physical properties described in
Eqns. (1) and (4). Doing so, we considered only the first term
in Eqn. (1) and omitted the energy-dependence of the Klein-
Nishina approximation.

The energy dependence of the scatter coefficient is not yet
fully explored. While attenuation and phase-sensitive imaging
can be explained by material properties, the linear scatter
coefficient also depends on the actual setup parameters. We
use the wave propagation algorithm of [14], [28] to simulate
the scatter coefficient at different energies for several porous
materials. Example results from these simulations are shown
in Fig. 3. The exponent Cσ is obtained by least-square fitting
of the simulated data to Eqn. (7). The simulation indicates
that the energy dependence for different materials might be
approximated with a monomial, but the exponent varies highly
with the material. However, the fitted data are located roughly
around Cσ ≈−4, which is used henceforth.

C. Reconstruction Framework

We propose an iterative maximum-likelihood reconstruction
algorithm [25] for Talbot-Lau X-ray Computed Tomography.
For beam-hardening correction, a polychromatic modeling of
the imaging process is required. To additionally avoid inter-
mittent fitting of the phase-stepping curve, it is also required
to define the likelihood of the measured phase-stepping curves
at each energy E from a set of attenuation, phase and scatter
coefficients.

1) Forward-Projection: We assume that for a given energy,
the transmission Ti, dark field Di and object phase-shift φi
seen by ray i are modeled by integration along the line-
of-sight of attenuation coefficient, refractive decrement and
scatter coefficient.

Fig. 4: Footprint of the Kaiser-Bessel functions.

This integration could be done by an arbitrary implementa-
tion of a forward projector. However, if a standard projector
is used, the differential character of the phase image would
require numerical differentiation, possibly introducing numeric
artifacts. Koehler et al. proposed to use Kaiser-Bessel func-
tions as basis functions to phase-contrast reconstruction [29].
The main advantage is that Kaiser-Bessel functions (also
known as blobs) provide analytical expressions of the Radon
transform and its derivative [30].

The proposed method is implemented in parallel beam
geometry, but it may be used with more complex acquisition
geometries such as fan or cone beam in a straightforward man-
ner. For the non-differential attenuation and scatter images,
the weights for the system matrix elements Mi j are computed
as the integration of the footprint of blob j over the area of
detector pixel i, as shown in Fig. 4. For differential matrix
elements Mδ

i j, integration is performed over the differential
footprint.

2) Talbot-Lau Image Model: Each blob volume element j
has an associated attenuation coefficient µ j, refractive decre-
ment δ j and scatter coefficient σ j. Absorption Ti(E) and dark-
field Di(E) seen by pixel i at energy E are given by

Ti(E) = exp

(
−∑

j
Mi j ·µ j(E)

)
, (8)

and

Di(E) = exp

(
−∑

j
Mi j ·σ j(E)

)
. (9)

The differential phase is given by

∆φi(E) = ∑
j

Mδ
i j ·δ j(E) , (10)

where the differential character, usually expressed by the
partial derivative ∂

∂x in phase stepping direction of G2, is taken
into account by the differential matrix element Mδ

i j.



20 30 40 50 60
0

0.2

0.4

0.6

Energy [keV]

V
is

ib
ilt

y

Fig. 5: Blue: X-ray spectrum scaled to arbitrary unit for
better visualization. Red: Simulated visibility of the grating
interferometer as a function of the photon energy.

Given the projected values Ti(E), Di(E) and ∆φi(E) we
expect the observed photon counts Ni,s at stepping position s
to be:

Ni,s =
∫

dE Ni(E) · (1+Vi(E) · cosφi,s(E)) , (11)

with the expected mean photon count

Ni(E) = N0
i (E) ·Ti(E) , (12)

the expected visibility

Vi(E) =V 0
i (E) ·Di(E), (13)

and the expected phase

φi,s(E) = φ
0
i (E)+φs +∆φi(E) . (14)

The relative phase φs := 2π
s

p2
depends on the stepping distance

s of G2 and the grating period p2. N0
i (E), V 0

i (E), and φ 0
i (E)

denote energy-dependent free-field reference measurements
for pixel i. However, N0

i (E), V 0
i (E), and φ 0

i (E) can not directly
be measured in a setup with an energy-integrating detector.
However, prior knowledge on the X-ray tube and the acquisi-
tion setup provides the per-energy amount of photons N0

i (E).
Phase shift per energy φ 0

i (E) and visibility per energy V 0
i (E)

can be reasonably well estimated from free-field simulation
using a priori knowledge the setup parameters, i.e., spectrum,
source focal size, detector response and grating materials,
geometry and positions. Figure 5 shows example simulations
for the setup used in this paper. Here, the spectrum is plotted
in blue, the energy-dependent visibility is plotted in red.

The forward model stated above is general and requires
multi-spectral image data. Each voxel j is required to contain
the attenuation, refractive decrement and scatter coefficient at
any energy E. The information per energy is inferred from the
model in Eqn. (5) to Eqn. (7). The integration over the whole
spectrum is done by subdivision into an arbitrary number of
energy bins and subsequent summation.

Ni,s = ∑
k

Ni(Ek · (1+Vi(Ek) · cosφi,s(Ek)) . (15)

3) Reconstruction Algorithm: For reconstruction we adapt
the iterative maximum-likelihood algorithm for monochro-
matic Talbot-Lau tomography from [22]. Minimization of the
cost function is performed by coordinate gradient descent to
iteratively update attenuation, phase and scatter image [23]. In
each update step a line search is done by backtracking.

Let θ := (µ j,δ j,σ j) be the parameter set describing the
object and N := (Ni,s) the set of intensities measured by the
detector. Assuming negligible electronic noise leads to the
negative log-likelihood for Poisson distributed noise l,

l(θ | N) = ∑
i,s
−Ni,s · ln

(
Ni,s
)
+Ni,s , (16)

where constant terms that do not affect location of the min-
imum are omitted. Note that the likelihood could readily
be adapted to a shifted Poisson noise model to account for
electronic noise.

Derivation of Eqn. (11) with respect to each coefficient leads
to the gradient

∂

∂ µ j
l = ∑

i,s

(
Ni,s−Ni,s

)
·Mi j . (17)

∂

∂δ j
l = ∑

i,s

(
Ni,s

Ni,s
−1
)∫

dE Ni(E)Vi(E)sinφi,s(E) ·Mδ
i j .

(18)

∂

∂σ j
l = ∑

i,s

(
Ni,s

Ni,s
−1
)∫

dE Ni(E)Vi(E)cosφi,s(E) ·Mi j .

(19)

Implementation of the framework was done in Java using
the reconstruction framework CONRAD [31]. The highest
computational effort is located in the polychromatic forward-
projection. This requires projection of N volumes at different
energies E, where N is the number of used energy bins.
Since each energy bin is mutually independent, multi-core
computing was applied to reduce computation time.

III. EVALUATION & RESULTS

The evaluation in this paper is based on synthetic data
affected by beam-hardening. The data were obtained using
the proposed forward model with a well-defined phantom. The
objective is to see if an artifact free reconstruction within the
maximum-likelihood framework is possible.

For this purpose a Talbot-Lau imaging system was simulated
using a wave-propagation algorithm [14]. A 60keV tungsten
tube with a source size of 300µm is used, and a perfect
detector without any cross talk is assumed. All three gratings
are made of gold. The source grating G0 has a grating period of
p0 = 10µm and a height of h0 = 200µm. For the phase grating
G1, we have p1 = 5.716µm, h1 = 6.3µm. The analyzer grating
G2 has p2 = 10µm, h2 = 200µm respectively. The distance
from G0 to G1 is 0.8 m and G1 to G2 is 0.6 m.

The detector consists of 300 pixels with a size of 333µm
each. The reconstructed volume is 2562 with a voxel size of
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Fig. 6: The first row shows ground truth data for absorption, refractive decrement and scatter at a mean energy of E0 = 38.8keV.
The two yellow lines define crosssections shown in Fig. 7. The range of the refractive decrement δ was scaled to be in the same
range as the attenuation coefficient by multiplication of 0.2×108. The second row shows the difference between the direct
reconstruction using filtered backprojection and ground truth data. The third row shows the difference between the iterative
reconstruction and ground truth data. The error of the iterative reconstruction is a magnitude smaller than for the filtered
backprojection reconstruction.

390µm. The angular range is 2π with 480 projection images
using a parallel beam setup where three phase steps per
projection angle are performed. The mean reference photon
count is constant over the detector with N0

tot = 4.5×106

photons detected by each pixel per exposure. The spectrum
was binned into 15 energy bins.

A numerical phantom is defined consisting of three cylin-
ders of different material each, see Fig. 6. The largest cylinder
is filled with H2O and has radius of 17.5 mm. The second
cylinder has a radius of 13.5 mm and is filled with PTFE. The
smallest has a radius of 12.5 mm and contains PMMA. The
attenuation coefficient µ and refractive decrement δ are taken
from tabulated values [32].

The dark-field signal is a special case in the phantom. An
entirely homogeneous cylinder would not create any dark-

field, leading to a scatter coefficient σ of 0. Instead, we
assume that each cylinder is filled with numerous micrometer-
sized objects. Such small components, modeling for example
sandy or spongy material, create significant dark-field due to
small angle scattering [33]. Uniformly distributed small com-
ponents are expected to lead to a constant scatter coefficient
across each cylinder. For our synthetic phantom, we choose
σ(PMMA) = 20, σ(PTFE) = 14, and σ(H2O) = 8 at a mean
energy E0 = 38.8keV. Synthetic phase-stepping data of the
phantom are generated with the proposed forward model using
the setup parameter from above.

Next, phase-retrieval is performed via least-square fitting
on the phase-stepping data. Subsequently, the obtained at-
tenuation, phase and dark-field sinograms are reconstructed
using filtered back projection. We use the Ram-Lak filter for
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Fig. 7: Two cross-sections through the reconstructed data as visualized in Fig. 6. Black: Phantom ground truth, Blue: Filtered
Backprojection, Red (dashed): Proposed reconstruction method. For all images, the iteratively reconstruction and ground truth
are in high agreement.

attenuation and scatter, and the Hilbert filter for the differential
phase image. This reconstruction is used as an initial solution
for the proposed reconstruction algorithm. The algorithm is
stopped after 200 iterations.

Figure 6 shows the difference between ground truth and
the reconstruction results. From left to right, the images show
distributions of absorption, phase, and scatter. In the top
row, the ground truth is shown. The second and third row
show the result of filtered backprojection and of the proposed
algorithm. The two lines in Fig. 6 (a) indicate the location
of the associated cross-section lineplots that are shown in
Fig. 7. Here, ground truth is shown in black, the result by
filtered backprojection is shown in blue, and the proposed
method is shown by the red dashed line. In all three images
reconstructed with filtered backprojection, typical cupping and
streak artifacts are visible. These artifacts are more pronounced
in attenuation and scatter than in the phase image. This is
because the refractive decrement decays with only E−2, while
attenuation and scatter yield a stronger energy dependence.

The proposed algorithm is able to reconstruct all three
images with almost all polychromatic artifacts removed. Re-
construction of attenuation and scatter are almost perfect. The
phase-image exhibits slight cupping artifacts. We assume that
these artifacts might also disappear if a higher number of
iterations were chosen, but we will investigate this in greater
detail in future work. Overall, we observed that attenuation
and scatter images converge much faster than the phase-
images. A similar behavior has already been mentioned by
Brendel et al. with a maximum-likelihood reconstruction for
monochromatic Talbot-Lau imaging [23]. We assume that this
behavior originates from the differential nature of the phase
image and the non-convexity of the cost function.

IV. CONCLUSION

We propose a new reconstruction algorithm that incorpo-
rates a polychromatic model in grating based phase-contrast

imaging. The biggest benefit of polychromatic modeling is that
it implicitly avoids beam-hardening artifacts. To our knowl-
edge, this is the first tomographic reconstruction algorithm that
is specifically designed for polychromatic Talbot-Lau imaging.

For synthetic phantom data, the proposed method is able
to correct beam-hardened corrupted data for reconstructions
of attenuation, phase and scatter. Results for attenuation and
scatter are highly accurate. The phase image is also greatly
improved over a naive reconstruction, but still exhibits slight
cupping artifacts. Also, we observed that reconstruction of
attenuation and scatter converges much faster than reconstruc-
tion of the phase. We believe that the slow convergence can
be efficiently targeted with a specially tailored optimization
algorithm.

In future work, we will evaluate the algorithm on real data
such as well-defined physical phantoms and medical data.
Another important aspect will be to compare the presented
method to state-of-the-art beam hardening corrections.
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