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Abstract. Optical coherence tomography (OCT) enables high-resolution
and non-invasive 3D imaging of the human retina but is inherently im-
paired by speckle noise. This paper introduces a spatio-temporal denoising
algorithm for OCT data on a B-scan level using a novel quantile sparse
image (QuaSI) prior. To remove speckle noise while preserving image
structures of diagnostic relevance, we implement our QuaSI prior via
median filter regularization coupled with a Huber data fidelity model
in a variational approach. For efficient energy minimization, we develop
an alternating direction method of multipliers (ADMM) scheme using a
linearization of median filtering. Our spatio-temporal method can handle
both, denoising of single B-scans and temporally consecutive B-scans,
to gain volumetric OCT data with enhanced signal-to-noise ratio. Our
algorithm based on 4 B-scans only achieved comparable performance to
averaging 13 B-scans and outperformed other current denoising methods.

1 Introduction

Since its invention in 1991, optical coherence tomography (OCT) [2] has become
a standard imaging technique within clinical workflows in ophthalmology. OCT
enables non-invasive 3D imaging of retinal layers with spatial resolutions in
a micrometer range. These properties contributed to its wide distribution for
diagnosis and disease monitoring as well as for computer-aided diagnostics [8].
Besides these merits, OCT suffers from a low signal-to-noise ratio (SNR) due
to speckle noise caused by photon interference. Hardware-based techniques,
e. g. frequency compounding [12], are able to reduce speckle noise but increase
the complexity of the system. Thus, image-based post-processing algorithms to
improve the reliability of retinal OCT data are attractive. However, many popular
denoising methods such as BM3D [3] have been mainly designed for natural images
and can handle non-Gaussian noise only to a certain extend. Furthermore, noise
reduction in OCT is a sensitive issue as the preservation of tiny morphological
structures is a mandatory requirement. Spatial or single-image methods perform
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noise reduction by filtering single B-scans. Spatial filters suited for OCT are
hybrid median filter, Lee filter, Wiener filter, or wavelet thresholding [11]. Popular
global methods include non-linear diffusion [14], variational formulations [4], or
structure-adaptive Bayesian estimation [15]. More recently, sparse coding [5] using
high SNR scans for dictionary learning to denoise single low SNR scans has been
proposed. The spatial methods have in common that noise reduction is limited
as they utilize single B-scans only. Temporal or multi-image methods exploit
several B-scans acquired sequentially from the same location or nearby positions.
A simple method often implemented for commercial systems is averaging of
multiple registered B-scans. Recent approaches are wavelet multi-image denoising
[9] or matrix completion [1] that have been customized to speckle noise reduction
and outperform simple averaging. However, temporal methods require longer
acquisition times to gain multiple B-scans and hence increase patient discomfort.

This paper introduces a new spatio-temporal OCT denoising algorithm. Our
contribution is two-fold: 1) We propose denoising via energy minimization based
on the novel class of quantile sparse image (QuaSI) priors. To deal with speckle
noise while preserving morphological structures, we regularize with the popular
median filter as a special instance of our QuaSI prior. 2) We develop an alternating
direction method of multipliers (ADMM) scheme for optimization with the non-
linear median filter. Our method can handle both, denoising of single and multiple
registered B-scans. Source code of our method is available on our webpage.

2 Proposed Spatio-Temporal Denoising Algorithm

2.1 Noise Model and Energy Minimization Formulation

Our method aims at denoising volumetric OCT data, where a single volume is
represented as a stack of B-scans G̃ ∈ RL×Nx×Ny . We denote the l-th B-scan of
size Nx ×Ny in vector notation as g̃l ∈ RN with l ∈ [1, L] and N = NxNy. Each

noisy B-scan g̃l in a given volume is related to the respective noise-free scan f̃ l

according to multiplicative speckle noise. Following related denoising methods
[15,4], we model speckle noise in a logarithmic measurement range according to
f l = gl + nl, where f l = log(f̃ l), g = log(g̃l) and nl ∈ RN is additive noise.

Let g(1), . . . , g(K) be a set of B-scans that are captured from the same location
and registered to each other. We estimate a denoised B-scan f̂ according to:

f̂ = argmin
f
L(f) = argmin

f

K∑
k=1

ρ
(
f − g(k)

)
+ µ‖∇f‖1 + λRQuaSI(f). (1)

In (1), the first term denotes the fidelity of f w.r.t. K observed noisy B-scans
g(k), k = 1, . . . ,K according to the loss function ρ : RN → R+

0 . The second
term is the anisotropic total variation (TV) to regularize the image gradient
∇f = (∇xf ,∇yf)> with the weight µ ≥ 0. The third term denotes regularization
according to our proposed QuaSI prior with the weight λ ≥ 0, see Section 2.2.

To define the data fidelity term in (1), we propose to use outlier-insensitive
loss functions. In this paper, we use the Huber loss [10] for ρ(·) to model the
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image formation in retinal OCT. It is worth noting that the Huber loss can tackle
outliers related to non-Gaussian noise while being convex and easy to optimize.

2.2 Quantile Sparse Image Prior

The novel class of priors that we propose is based on quantile filtering. We denote
a quantile filter as f̃ = Q(f), where f̃i = quantileN (i)(fi, p) determines the
p-quantile with p ∈ [0, 1] within the local neighborhood N (i) centered at the i-th
pixel in f . Our prior is defined as fixed point under the quantile filter according
to:

RQuaSI(f) = ||f −Q(f)||1 . (2)

In general, our prior is non-convex. Similar forms have also become popular
in other inverse problems, e. g. the dark channel prior [7] or regularization by
denoising priors [13]. This general model facilitates regularization by various types
of order statistics or parameters such as minimum or maximum, first or third
quantile, weighted median, etc. To customize (2) for OCT denoising in this paper,
we use the p = 0.5 quantile that is equivalent to the median. This implements a
regularization by the popular median filter within our framework. We found that
this facilitates structure-preserving denoising and handles non-Gaussian noise as
important prerequisites for the desired application.

2.3 Alternating Direction Method of Multiplier Optimization

The optimization of (1) involves two non-smooth regularization terms related to
the TV and our proposed QuaSI prior. For efficient minimization with the non-
smooth terms, we adopt ADMM optimization [6]. To this end, we introduce the
auxiliary variables u and v and re-formulate (1) via the augmented Lagrangian:

LAL(f ,u,v, bu, bv) =

K∑
k=1

ρ
(
f − g(k)

)
+
α

2
‖u− f + Q(f)− bu‖22

+ λ‖u‖1 +
β

2
‖v −∇f − bv‖22 + µ‖v‖1,

(3)

where bu and bv denote Bregman variables, and α > 0 and β > 0 are Lagrangian
multiplier to enforce the constraints u = f −Q(f) and v = ∇f . We iteratively
optimize (3) by alternating minimization w.r.t. the individual parameters.

Notice that direct optimization of (3) is not tractable due to the non-linearity
of the quantile operator Q(f) and the quantile operator is first linearized as
Q(f) = Qf [7]. If Q(f) denotes median filtering, we assemble Q element-wise as
a binary matrix according to Qij = 1 ⇔ z = j, where j = arg medianz∈N (i)fz
denotes the position of the median in the neighborhood N (i) centered at the i-th
pixel. This construction fulfills Q(f ′) = Qf ′ for f ′ = f , while otherwise we use
Q as an approximation of the median filter. In the proposed ADMM scheme, we
gradually update Q and assemble the linearization from the intermediate image
f t estimated at the previous iteration. Given this linearization, we minimize (3)
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Algorithm 1 Spatio-temporal denoising algorithm using ADMM optimization

Initialize u1 = v1 = 0, b1u = b1v = 0 and f1 = mean(g(1), . . . , g(K))
for t = 1, . . . , Touter do

Assemble Q from the intermediate image f t

for i = 1, . . . , Tinner do
Update the intermediate image f t+1 using CG iterations for (4)
Update the auxiliary variables ut+1 and vt+1 using (5) - (6)
Update the Bregman variables bt+1

u and bt+1
v using (7) - (8)

end for
end for

w.r.t. the denoised image f . To handle the Huber loss, this is done by iteratively
re-weighted least squares (IRLS). This leads to the linear system:[

2

K∑
k=1

W (k) + α (I −Q)
>

(I −Q) + β∇>∇
]
f t+1

= 2

K∑
k=1

W (k)g(k) + α (I −Q)
>

(u− bu) + β∇>(v − bv),

(4)

where W (k) denotes a diagonal weight matrix derived from the Huber loss. For
IRLS, the weights are computed based on the intermediate image f t according to

W
(k)
ii = ρ′(fi − g(k)i )/(f ti − g

(k)
i ), where ρ′(z) is the derivative of the Huber loss

[10]. The linear system in (4) is solved by conjugate gradient (CG) iterations.
The minimization of (3) w.r.t. to the auxiliary variables is separable and per-

formed element-wise. We obtain closed-form solutions using shrinkage operations:

ut+1
i = shrink

(
[f t+1 −Qf t+1 + btu]i, λ/α

)
, (5)

vt+1
i = shrink

(
[∇f t+1 + btv]i, µ/β

)
, (6)

where shrink(z, γ) = sign(z) max(z − γ, 0) denotes soft-thresholding associated
with the L1 norm [6]. Finally, the Bregman variables are updated according to:

bt+1
u = btu + (f t+1 −Qf t+1 − ut+1), (7)

bt+1
v = btv + (∇f t+1 − vt+1). (8)

Algorithm 1 summarizes ADMM using u1 = v1 = 0, b1u = b1v = 0, and the
average of the input B-scans as an initial guess f1. We found experimentally
that for the convergence to a stationary point and the speed-up of ADMM it is
sufficient to update the linearization only after a couple of iterations. For this
reason, we use Tinner iterations to update f ,u, v, bu, and bv and Touter iterations
to update Q.

3 Experiments and Results

We compare our method to the well known BM3D [3] as well as current OCT
noise reduction algorithms, namely Bayesian estimation denoising (BED) [15],
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averaging (AVG) of registered B-scans, and wavelet multi-frame denoising (WMF)
[9]. As BM3D and BED handle single B-scans only, we apply these methods to
the outcome of AVG for fair comparisons. WMF is a pure temporal approach
and requires at least two registered B-scans. The parameters of our method were
set to µ = 0.075 ·K, λ = 5.0 ·K, α = 100.0 ·K, β = 1.5 ·K, Touter = 20 and
Tinner = 2 for K B-scans and 3× 3 median filtering to setup the QuaSI prior.

Pig Eye Data. To study the behavior of our algorithm quantitatively, we
conducted experiments on the publicly available pig eye dataset provided by
Mayer et al. [9]. The dataset was captured ex-vivo by scanning a pig eye with
a Spectralis HRA & OCT and comprises subsets of 35 eye positions with 13
B-scans each. Following [9], a gold standard B-scan was computed by averaging
the 455 scans that have already been registered to each other. We applied the
competing denoising methods on subsets of K registered B-scans with K ∈ [1, 13].
Fig. 1 compares our method with and without the proposed QuaSI prior to
simple averaging of consecutive B-scans for different numbers of input images.
Notice that spatio-temporal denoising substantially enhanced noise reduction
compared to averaging. We also found that regularization by our QuaSI prior in
combination with the TV prior further enhanced noise reduction compared to TV
denoising. Fig. 2 depicts the mean peak-signal-to-noise ratio (PSNR) and struc-
tural similarity (SSIM) relative to the gold standard. Here, our spatio-temporal
method based on 4 B-scans only was comparable to averaging of 13 B-scans.
Compared to TV denoising, the QuaSI prior enhanced the mean PSNR and SSIM
by 0.9 dB and 0.03, respectively. The proposed method also outperformed BM3D,
BED and WMF in terms of both measures.

Clinical Data. We also investigate denoising on clinical data which were acquired
using a prototype ultrahigh-speed swept-source OCT system with 1050 nm wave-
length and a sampling rate of 400,000 A-scans per second [2]. Each B-scan was
acquired five times in direct succession and the B-scans were registered towards
the central one using cross-correlation. We use OCT data from 14 human subjects
with two volumes each. The data covers proliferative and non-proliferative dia-
betic retinopathy, early age-related macular degeneration and one healthy subject.
The field size is 3×3 mm with 500 A-scans by 500 B-scans. Our experiments were
conducted on the central B-scan of each volume. To quantify noise reduction
in the absence of a gold standard, we use the mean-to-standard-deviation ratio
MSR = µf/σf and the contrast-to-noise ratio CNR = |µf −µb|/(0.5(σ2

f +σ2
b ))0.5

[5,11,15], where µi and σi, i ∈ {f, b} denote the mean and standard deviation
of the intensity in foreground (i = f) and background (i = b) image regions,
respectively. Both measures were determined for five foreground regions and one
background region that were manually selected for each B-scan, see Fig. 3a. Fig. 4
depicts the mean MSR and CNR for different numbers of input images. Here,
BM3D and our method achieved the best denoising performance in terms of both
measures. In particular, the combination of the TV and QuaSI priors consistently
outperformed the competing methods. Fig. 3 compares our approach and two
competing methods on one example dataset. WMF enabled structure-preserving
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(a) K = 1 (b) K = 5 (c) K = 13

Fig. 1: Comparison of simple averaging of consecutive B-scans (top row) to the
proposed spatio-temporal denoising with TV regularization only (second row)
and TV + QuaSI regularization (third row) for different numbers of input images.

Fig. 2: PSNR and SSIM of different denoising methods averaged over 35 pig eye
positions for different numbers of input images.

denoising but suffered from noise in homogeneous areas resulting in lower MSR
and CNR measures. BM3D enables a strong noise reduction but suffered from
streak artifacts, see the magnified image regions. The proposed method achieved
a decent tradeoff between noise reduction and structure preservation.
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(a) Noisy image (MSR: 2.68, CNR: 2.47) (b) BM3D [3] (MSR: 4.61, CNR: 4.85)

(c) WMF [9] (MSR: 3.67, CNR: 3.55) (d) Ours (MSR: 5.02, CNR: 5.36)

Fig. 3: Denoising on our clinical dataset using K = 5 B-scans from a 46 years
old male diabetic retinopathy patient. (a) Noisy image with manually selected
background (red) and foreground regions (green) to determine MSR and CNR.
(b) - (d) BED [15], WMF [9] and our proposed method.

Fig. 4: MSR and CNR measures averaged over 14 subjects to quantify noise
reduction on our clinical dataset for different numbers of input images.

4 Conclusion

This paper proposed a spatio-temporal denoising algorithm for OCT data. To
effectively reduce speckle noise and preserve morphological structures, we intro-
duced the class of QuaSI priors. We implemented this model via median filter
regularization and devolved an ADMM scheme for efficient numerical optimiza-
tion. Our method can denoise single or multiple registered B-scans. Compared to
simple B-scan averaging and state-of-the-art single-image methods, our algorithm
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is more effective in reducing speckle noise. In contrast to pure temporal methods,
e. g. [9], we can adjust the number of B-scans as a tradeoff between denoising
performance and acquisition time. In our future work, we study the impact of
our algorithm to common OCT image analysis tasks.
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