Towards Understanding Preservation of Periodic **Object Motion in Computed Tomography**

Franziska Schirrmacher^{1,*}, Oliver Taubmann^{1,2,*}, Mathias Unberath^{1,2}, and Andreas Maier^{1,2} ¹ Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-University Erlangen-Nuremberg, Germany

- ² Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany
- * These authors contributed equally to this work

Introduction

- Motion during acquisition results in artifacts.
- Ventricles appear blurred in the reconstruction, while arteries cause streaking artifacts.
- Stationarity of the ventricles and motion of the arteries in the forward projection (Fig. 1).
- Identify the influence of **object shape and motion type** on

Figures

Figure 1. Frames of a rational angiogram at time t_1 (a) and t_2 (b) and corresponding digitally reconstructed radiographs at time t_1 (c) and t_2 (d).

the artifacts.

Materials and Methods

• **Phantom** to mimic the anatomy:

- **Temporally varying circle**, either shifted or pulsating.
- Variation of the edge sharpness by a Gaussian filter kernel.
- Simulation procedure:
 - Compute the Radon transform to obtain a sinogram.
 - Reconstruct each sinogram (Fig. 2) with a filtered backprojection algorithm.
 - Forward projection (Fig. 3) of the reconstructed image.
- Observation:
 - Reprojected sinogram may retain a fraction of the original motion

Figure 2. Reconstructed images of the pulsating (a, c) and the shifted (b, d) object, where $\sigma = 5$ (a, b), $\sigma = 10$ (c, d) and f =25 cycles

Figure 3. Reprojected images of the pulsating (a, c) and the shifted (b, d) reconstructed object, where $\sigma = 5$ (a, b), $\sigma = 10$ (c, d) and f = 25 cycles

- Experiments:
 - Comparison of the original and the reprojected sinogram.
 - **Quantitative measure** for the remaining motion:

 $q = \frac{\xi_f(\mathcal{F}\{s_{reproj}\})}{\xi_f(\mathcal{F}\{s_{orig}\})}$

- *s_{reproj}* and *s_{orig}*: sequence of line integral through a fixed point.
- \mathcal{F} :Fourier transform
- ξ_f : summation of an element-wise multiplication with N(f, 1)

Results and Discussion

- Fig. 4 summarizes the results of the simulation.
- The amount of retained motion decreases with increasing frequency

Figure 4. Plots over the fraction of preserved motion q of the pulsating (left) and the shifted (right) object over the frequency f for different values of σ .

- Low frequencies: The motion type has a stronger **impact** on the preserved amount of motion.
- High frequencies: The effect is more dependent on the edge sharpness
- Preserved motion is linked to streaking artifacts (Fig. 2)
- Further work: Incorporate the knowledge in the design of reconstruction filters.

Contact

⊠ franziska.schirrmacher@fau.de, oliver.taubmann@fau.de

References

- [1] Hansis E. et al., PMB 53(14):3807-3820 (2008)
- [2] Schwemmer C. et al., PMB 58(11):3717-3737 (2013)
- [3] Müller K. et al., PMB 59(12):3121-3138 (2014)
- [4] Unberath M. et al, In: Proc. Intl. Conf. On Image Formation in X-Ray CT p.89-92 (2016)
- [5] Zeng GL, Springer DOI: 10.1007/978-3-642-05368-9 (2010)
- [6] Mc. Kinnon GC et al., IEEE Trans BME 28(2):123-127 (1981)
- [7] Chen GH et al., Medical Physics 35(2): 660-663 (2008)
- [8] Taubmann O. et al., Medical Physics 43(2):883-893 (2016)
- [9] Fieselmann A. et al., PMB 56(12):3701-3717 (2011)