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Abstract. In this paper, we study periodic object motion in computed
tomography. Specifically, we investigate the phenomenon that motion
may—in a sense—be preserved even in a standard analytical reconstruc-
tion that assumes a static object. In fact, these preserved motion patterns
reappear in a forward-projection of the allegedly static reconstruction. In
numerical simulations abstracting the cardiac anatomy, we show that not
only the type of motion, but also the sharpness of the boundary of the
moving object affects how much of the motion is preserved.

1 Introduction

Computed tomography (CT) imaging of the heart typically entails a challeng-
ing image reconstruction problem. While the radiation source rotates around
a patient, their heart beats. This leads to inconsistencies in the acquired data
and results in artifacts when performing a straight-forward reconstruction [1–3].
Different types of motion may be observed in a cardiac scan; the ventricles con-
tract periodically, whereas the coronary arteries or catheters inserted into the
heart mostly exhibit translational motion caused by the contraction [4]. Nat-
urally, the sizes and shapes of the moving objects vary considerably as well.
Arteries and catheters are narrow, elongated structures with a relatively sharp
response characteristic, i. e. the image gradient at the object edges is high, and
they are often displaced by a distance at least as large as their own diameter,
while their shape remains mostly unaffected. In contrast, the ventricles usually
do not have boundaries that are as well-defined and they describe a pulsating
motion pattern, causing the object to change its size and shape.

In a standard reconstruction that assumes a static object, these differences
lead to the ventricles appearing blurred, while arteries or catheters tend to cause
streaking artifacts [3]. Curiously, in a forward projection of such an image using
the same trajectory, the ventricles appear largely stationary while the catheter
follows its original motion to a certain extent. An illustrative example is shown in
Fig. 1. In this paper, we aim to identify properties relevant to this phenomenon
and quantify their influence using numerical simulations.



2 Schirrmacher, Taubmann et al.

(a) Original scan at time t1 (b) Original scan at time t2

(c) Reprojection at time t1 (d) Reprojection at time t2

Fig. 1. Frames of a rotational angiogram (a, b) and corresponding digitally recon-
structed radiographs (DRR) obtained via projection of a static reconstruction (c, d).
Note that the catheter still follows its original motion (red) in the DRR, whereas the
left ventricle no longer pulsates (yellow). The full scan covers ca. 27 heart beats.

2 Materials and Methods

2.1 A Simple Dynamic Phantom

The phantom used in our simulations consists in a temporally varying circle.
Blurring the edges of the circle by convolution with a Gaussian filter kernel
yields different versions with varying sharpness. Modifiable parameters for each
circle are its center µ = (µx, µy)>, its radius r, the number of motion periods f
during the acquisition, and the standard deviation of the Gaussian σ.

These parameters allow for a dynamic simulation adapted to the properties
of cardiac motion. We define motion by two extremal states between which a
parameter oscillates following a sinusoidal curve. As a consequence, r(t), µ(t) ∝
cos(2π · f · t) are time dependent, with t ∈ [0, 1] being the time relative to the
complete acquisition.

Two different dynamic objects, Opuls and Oshift, are considered, which roughly
mimic the behavior of ventricles and arteries/catheters, respectively. Opuls is
centered at the origin, µ = (0, 0)>, and pulsates with its radius ranging from
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(a) (b) (c) (d)

Fig. 2. Extremal states of the motion patterns of both considered objects Ôpuls (a, b)

and Ôshift (c, d), with σ = 5.

(a) p(s, θ | Ôpuls) (b) p(s, θ | Ôshift)

Fig. 3. Sinograms for f = 23 and σ = 5. The angular range θ ∈ [0◦, 50◦] is shown.

rmin to rmax. Oshift retains its shape with a fixed radius rc = (rmax + rmin)/2
corresponding to the mean radius of Opuls over time. Its position ranges from
(0,−µs)

> to (0, µs)
>, where µs = rmax− rc to ensure that the maximum extents

of both objects w. r. t. the origin coincide. Fig. 2 displays the extremal motion
states of both objects after blurring with the 2-D Gaussian kernel Gσ,

Ô� = O� ∗Gσ, � ∈ {puls, shift}. (1)

We then compute the Radon transform to obtain a parallel-beam sinogram p(s, θ)
over θ ∈ [0◦, 180◦],

p(s, θ | Ô�) =

∫∫
Ô�(µ(tθ), r(tθ)) · δ(y cos(θ) + x sin(θ)− s) dx dy, (2)

where δ denotes the Dirac delta function and tθ = θ/180◦. Example sinograms
are shown in Fig. 3.

2.2 Reconstruction and Reprojection

Filtered back-projection using the standard Ram-Lak convolver [5] is employed
to obtain a (motion-corrupted) reconstruction R� from each sinogram. Subse-
quently, we project the reconstructed image forward again with the same ac-
quisition geometry. Although generated from a static image, it can be observed
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(a) Ôpuls
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(b) Ôshift

Fig. 4. Plots of the fraction of preserved motion q over the frequency f for different
values of σ, which controls the edge sharpness.

that this reprojected sinogram may retain a fraction of the original motion. It is,
therefore, compared to the original sinogram in terms of the amount of periodic
motion it still contains.

To obtain a quantitative measure for this property, we consider the point
(0, rc)

>, located on the boundary of both objects in their mean state of motion,
and collect all line integrals through this point observed in both the original
and reprojected sinograms as two sequences sorig, sreproj, respectively. On both
sequences, the 1-D Fourier transform F is performed to obtain the energy asso-
ciated with the frequency f of the simulated motion. To increase the robustness
of the measure, nearby frequencies are considered as well. More precisely, the
Fourier-transformed sequences are multiplied element-wise with a 1-D Gaussian
function with mean f and standard deviation of unity and, finally, summed up
as ξf (F{sorig}) and ξf (F{sreproj}). To quantify the remaining motion in the
reprojected sinogram, we compute their ratio

q =
ξf (F{sreproj})
ξf (F{sorig})

. (3)

2.3 Parameter Values

We set rmin = 5 and rmax = 20, resulting in rc = 12.5 and µs = 7.5. For σ
and f all integers in the ranges [0, 10] and [5, 23] are considered, respectively.
Frequencies f 6 4, for which a period would cover at least 45◦ of the trajectory,
were not evaluated to keep the focus on cases where the motion is markedly faster
than rotational effects. For all possible combinations of both of these parameters,
q is calculated to comprehensively assess their influence on the amount of motion
preserved. The phantom images are 300× 300 pixels large. The acquisition was
simulated with an angular spacing of 0.5◦ and 500 detector elements.
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(a) Rpuls (b) Rshift (c) Rpuls (d) Rshift

(e) p(s, θ |Rpuls)
q = 0.039

(f) p(s, θ |Rshift)
q = 0.041

(g) p(s, θ |Rpuls)
q = 0.0008

(h) p(s, θ |Rshift)
q = 0.081

Fig. 5. Reconstructed images (top row) and reprojected sinograms (bottom row) dis-
played with a bright, high-contrast windowing to emphasize artifacts, where σ = 5 for
(a, b, e, f) and σ = 10 for (c, d, g, h). In all images, f = 23 cycles were simulated. The
sinograms are shown in the angular range θ ∈ [0◦, 50◦].

3 Results

The quantitative results of the simulation are summarized in Fig. 4. For both
motion types, higher fractions q of the original motion are retained for lower
frequencies f . The predominant trend is that this effect is much stronger for the
translational than for the pulsating movement, which is intuitively in line with
what can be observed from catheters and ventricles in real data (cf. Fig. 1).

However, it is important to note that at higher frequencies, the influence of
edge sharpness gradually increases and finally surpasses that of the motion type.
E. g., for f = 23, a sharper Ôpuls at σ = 5 exhibits substantially more motion

after reconstruction and reprojection than a smoother Ôshift at σ = 10, both
in terms of the quantitative measurement and visual impression (see Fig. 5). In
fact, the difference in edge sharpness is more likely to explain what is observed
in Fig. 1 as the real scan covers 27 cycles, falling into a similar frequency regime.

In addition, looking at the reconstructed images Fig. 5(a) and Fig. 5(b),
it seems reasonable to assume that the preservation of motion in the static
image is closely linked to the streaking artifacts typically observed in motion-
corrupted scans. In other words, the streaks “encode” the original motion, which
could be a valuable insight when designing methods to deal with this effect. A
practical consequence of this issue, seen in Fig. 5(e), is the angle-dependence
of the preserved motion due to the rotational asymmetry of Fig. 5(a). It also
implies that the grid size contributes to the occurrence of this effect.
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4 Discussion

In summary, this work is concerned with the phenomenon that periodic motion
of a dynamic object may be preserved even within a static reconstruction. We
were able to reproduce observations made in complex real-world data sets within
a simple simulation framework, where we quantified the contribution of two
properties of the dynamic object on this effect: The type of motion (translational
vs. pulsating) and the sharpness of its boundaries. While both were influential,
we found that the relative strength of their influence is highly dependent on the
motion frequency.

Our findings can help foster a better understanding of the applicability and
limitations of techniques which directly rely on a static reconstruction of dynamic
objects as an intermediate step. Prominent examples are the artifact reduction
method by McKinnon and Bates [6], prior image constrained compressed sensing
[7], or joint bilateral filtering using a static guidance image [8]. Considering
the importance of edge sharpness discovered in our simulations, investigating
specialized reconstruction filters may be worthwhile, the design of which could
be informed by artifact models in the spirit of, e. g., prior work on perfusion
imaging [9].
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