Joint Calibration and Motion Estimation in Weight-**Bearing Cone-Beam CT of the Knee Joint using Fiducial Markers**

Christopher Syben¹, Bastian Bier¹, Martin Berger¹, André Aichert¹, Rebecca Fahrig², Garry Gold², Marc Levenston², Andreas Maier¹

¹ Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany ² Radiological Sciences Lab, Stanford University, Stanford, USA

Introduction

Motivation

- Imaging of the knee joint under weight-bearing conditions [1]
- Motion artifacts introduced due to patient motion.

Reference method:

- Motion compensation using fiducial markers [2].
- **Drawback**: requires full calibration before each scan due to horizontal trajectory [3].

Goal:

- Both calibration and motion compensation using fiducial markers.
- Avoid cumbersome calibration step.

Materials and Methods

> Minimizing the reprojection error (RPE):

$$\underset{\vec{\alpha},\vec{\beta}}{\arg\min} \ f(\vec{\alpha},\vec{\beta}) = \underset{\vec{\alpha},\vec{\beta}}{\arg\min} \ \frac{1}{2} \sum_{j=1}^{J} \sum_{i=1}^{M} ||h(\vec{n}) - \vec{u}_{ij}||_{2}^{2}$$

with

$$\vec{n} = \mathbf{P}_{j}(\vec{\alpha}, \vec{\beta}) \cdot (\vec{v}_{i} \quad 1)^{\top}$$
$$= \mathbf{K}_{j}(\vec{\beta}) \cdot \left[\mathbf{R}_{j} \mid \vec{t}_{j}\right] \cdot \mathbf{M}_{j}(\vec{\alpha}) \cdot (\vec{v}_{i} \quad 1)^{\top}$$

Figure 1: Weight-bearing imaging of knees using a clinical C-arm CBCT [1].

Figure 2: Estimation methods.

Phantom.

Figure 3: ROI of reconstruction for the different methods.

- Estimated 3D marker position \vec{v}_i and the corresponding 2D position \vec{u}_{ij} .
- Motion matrix $\mathbf{M}_j(ec{lpha})$ for each projection depending on extrinsic parameters $ec{lpha}$.
- Intrinsic camera matrix ${f K}_{i}(ec{eta})$ for each projection depending on intrinsic parameters β .
- $|\mathbf{R}_j | \vec{t}_j |$ extrinsic parameters for ideal horizontal trajectory initialization.
- $h(\vec{n})$ divides through the homogeneous coordinate.

Properties:

- Trajectory initialization using prior knowledge from the datasheet.
- > 6D rigid motion model
 - Modeling patient and system motion .
- \geq 3D intrinsic camera model suitable for source-to-detector geometry [4]
 - Modeling changing source-to-detector distance (focal length).
 - Modeling tilted detector, which results in shifted central point.

Comparing with:

- Motion compensation using a closed-form solution.
- Reference and an extended version of the reference method (see Fig. 2.B).

	Phantom	Clinical 1	Clinical 2	Clinical 3
No Correction	84.85	96.70	71.29	38.20
Closed Form	0.135	9.174	0.396	0.591
Reference	1.367	4.597	0.726	0.617
Ext. Reference	0.088	2.099	0.143	0.561
Proposed	0.088	3.283	0.324	0.535
Table 1: RPE in pixel for the different methods.				
	Phantom	Clinical 1	Clinical 2	Clinical 3
Closed Form	0.40 ± 444	0.64 ± 3.5	0.82±1.6	0.80±1.7
Reference	0.36±1.7	0.63 ± 2.7	0.84±3.7	0.81±3.3
Ext. Reference	0.35±2.6	0.63±2.7	0.82±1.3	0.82±2.4
Proposed	0.35±2.6	0.62±2.9	0.81±2.6	0.81±1.7
Table 2: FWHM (median ± std) for the different methods.				

Discussion and Conclusion

Evaluation on:

- Three clinical data.
- One simulated numerical phantom (see Fig. 2.D).

Results

> Qualitative evaluation: Best reconstruction results achieved by the extended reference and the proposed method, cf. Fig. 3 D, E and N, O.

> Quantitative evaluation: Best results achieved by the extended reference and the proposed method, cf. Tab. 1 and Tab. 2.

Contact Christopher.Syben@fau.de http://www5.cs-fau.de/~syben

- We extend the current method with a self-calibration component.
- The results are at least as good as from the reference method.
- No calibration necessary while reconstruction quality is preserved.

Limitations

- Markers have to be attached to the knee.
- Only rigid motion modeled.

[1] J.-H. Choi et al., "Fiducial marker-based correction for involuntary motion in weight-bearing c-arm ct scanning of knees. part ii. Experiment," Medical Physics 41(6):091905, 2014.

[2] K. Müller et al., "Automatic motion estimation and compensation framework for weight-bearing c-arm ct scans using fiducial markers," Proc. IFMBE 2015.

[3] A. Maier et al., "Analysis of Vertical and Horizontal Circular C-Arm Trajectories," Proc. SPIE Vol. 7961: 796123-796123-8, 2011. [4] W. Wein et al., "Self-calibration of geometric and radiometric parameters for cone-beam computed tomography," Proc. Fully3D Vol. 2, 2011.