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ABSTRACT

Recently, C-arm cone-beam CT systems have been used to acquire
knee joints under weight-bearing conditions. For this purpose, the C-
arm acquires images on a horizontal trajectory around the standing
patient, who shows involuntary motion. The current state-of-the-art
reconstruction approach estimates motion based on fiducial mark-
ers attached to the knee. A drawback is that this method requires
calibration prior to each scan, since the horizontal trajectory is not
reproducible. In this work, we propose a novel method, which does
not need a calibration scan. For comparison, we extended the state-
of-the-art method with an iterative scheme and we further introduce
a closed-form solution of the compensated projection matrices. For
evaluation, a numerical phantom and clinical data are used. The
novel approach and the extended state-of-the-art method achieve a
reduction of the reprojection error of 94% for the phantom data. The
improvement for the clinical data ranged between 10% and 80%,
which is followed by the visual impression. Therefore, the novel
approach and the extended state-of-the-art method achieve superior
results compared to the state-of-the-art method.

Index Terms— C-arm CBCT, Image Reconstruction, Motion
Estimation, Self-Calibration, Knee-Joint Imaging

1. INTRODUCTION

Recent work on 3D acquisition of the knee joint under weight-
bearing conditions use C-arms on a horizontal trajectory around the
standing or squatting patient [1, 2, 3]. C-arms are not originally
designed to scan on horizontal trajectories, which makes the scans
less repeatable. In addition, the standing patient position favors
involuntary motion. To improve the 3D image quality, both scanner
and patient motion have to be estimated and compensated.

The motion can be estimated using purely image-based or
marker-based approaches. Image-based methods estimate the mo-
tion using e.g. data consistency conditions [4, 5, 6]. Marker-based
approaches have been used often in medical imaging [2, 7, 8, 9],
but are not implemented on real clinical C-arm CT systems [3].
In order to estimate the scanner motion a self-calibration approach
would be beneficial. For a self-calibration of the C-arm CT system
either image-based approaches or external tracking techniques can
be used. Image-based approaches use 2D-3D registration or opti-
mize image-based metrics to calibrate the system [10, 11]. Also,
external-tracking techniques were published [12, 13], but rely on
external cameras.

The state-of-the-art approach is a fully automatic marker-based
motion estimation and compensation framework [3, 7, 14]. The cur-
rent approach shows a clear improvement of image quality, yet, we
identified two main limitations. The method estimates 3D marker
positions from the detected, motion-corrupted, 2D positions, which

are then used to estimate 2D-3D point correspondences. These cor-
respondences are assumed to remain constant during motion esti-
mation, even though their assignment is directly dependent on the
currently estimated motion. Additionally, the system has to be cal-
ibrated with a calibration phantom at the beginning of a scan se-
ries [15]. In order to improve the accuracies of the 3D marker posi-
tions and the assignment of point correspondences and to overcome
the calibration effort, we propose a novel optimization model with
an iterative scheme to update the 3D positions and the point corre-
spondences during optimization. Furthermore, we propose a self-
calibration which makes a prior calibration scan obsolete. For com-
parability we extend the state-of-the-art method with the iterative
scheme and also compare the approach to a closed form solution.

2. MATERIALS AND METHODS

2.1. State-of-the-Art Method

2.1.1. Motion Estimation and Compensation

The state-of-the-art method published by Müller et al. [3] combines
the motion estimation presented by Choi et al. [2] with the automatic
marker detection introduced by Berger et al. [14] and is summarized
in the following. First, a reference 3D marker position is estimated
for each marker by backprojecting the detected 2D marker positions.
The detected 2D marker positions are then assigned to the 3D loca-
tions, such that the reprojection error (RPE) between projected 3D
points and detected 2D points is minimal. The rigid motion is then
estimated by further minimization of the RPE given by

argmin
α

f(α) = argmin
α

1

2

J∑
j=1

M∑
i=1

||h(n)− uij ||22 , (1)

where

n = (n1 n2 n3)
> = Pj ·Mj(α) · (vi 1)> , (2)

with vector α ∈ R6J containing three rotation and translation pa-
rameters for each projection. The matrix Mj(α) ∈ R4×4 applies
the rigid motion to the calibrated projection matrix Pj ∈ R3×4 for
the j−th of J projections. The estimated i-th of M 3D marker po-
sition is given by vi and the corresponding detected 2D position on
the j-th projection is given by uij . The function h : R3 7→ R2

describes the mapping from 3D homogeneous coordinates to 2D
coordinates h(n) =

(
n1
n3

n2
n3

)>. The new projection matrices
Pnew
j = Pj ·Mα can be directly used to obtain a motion compen-

sated reconstruction (illustrated in Fig. 1a). An analytical derivative
of the cost function is available [7]. In the following this method is
referred to as the reference method.
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2.1.2. Proposed Extension: Update the 3D marker positions

The initial estimated 3D marker positions and the point correspon-
dences are negatively affected by patient motion. We propose an
extension of the reference method (illustrated in Fig. 1b), where the
estimated motion compensated projection matrices Pnew

j are used for
a second estimation step. With these new projection matrices more
precise 3D marker positions and thus, more accurate point corre-
spondences can be obtained, which improves the overall estimation.

2.2. Joint Motion Estimation and System Calibration

We present a method, which contains a self-calibration component
and thus is independent of a calibration scan. Two problems occur
if no calibrated projection matrices are available: first, the marker
detection needs initial, viable projection matrices to estimate the 3D
marker positions. Second, an evaluation of the objective function
given by Equation 1 also require an initial set of projection matrices.

2.2.1. Initialization and Intrinsic Camera Model

The projection matrices are initialized with an ideal horizontal cir-
cular trajectory, which is created based on known parameters of the
system’s geometry. We further introduce a camera model, to be able
to estimate deviations of the camera calibration. The projection ma-
trix can be written as: P = K

[
R|t

]
, where K ∈ R3×3 is the

intrinsic matrix and R ∈ R4×3 and t ∈ R4×1 contain six extrin-
sic parameters. From the perspective of the projection matrices it is
not distinguishable whether the patient or the CT system is moving.
Therefore, relative scanner and patient motion are both represented
by the extrinsic parameters. Assuming isotropic detector pixels re-
duces the number of degrees of freedom (DoF) of K from 5 down
to 3, i.e., the focal length f and the position of the central point cx
and cy . For the estimation of these parameters, we use an extended
model by Wein et al. [11], which is well suited for a cone-beam CT.
The intrinsic calibration matrix K is then given by

K =

(
fx 0 cx
0 fy cy
0 0 1

)
, (3)

which can be written as

fx =
px
sx
· d, fy =

py
sy
· d

cx =
px
2

+
px
sx
· tan η · d, cy =

py
2

+
py
sy
· tan θ · d ,

(4)

where d is the source detector distance (SDD) in mm. The width and
height of the detector is given by sx and sy in mm and px and py are
the width and height of the projection image in pixels. Further, η is
the angle, at which the detector is tilted around the vertical detector
axis v. Similarly, angle θ describes the rotation around the horizontal
detector axis u.

2.2.2. Cost-Function for Motion Estimation and System Calibration

To incorporate the self-calibration into the current objective func-
tion, the projection matrix of Equation 1 is replaced with the decom-
position of Pj . The cost function for the joint estimation is given

argmin
α,β

f(α,β) = argmin
α,β

1

2

J∑
j=1

M∑
i=1

||h(n)− uij ||22 , (5)
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Fig. 1: Flowchart for the three introduced methods.

where

n = Pj(α,β) · (vi 1)

= Kj(β) ·
[
Rj |tj

]
·Mj(α) · (vi 1)> , (6)

where β ∈ R3J encodes three intrinsic parameters for each projec-
tion. Hence,Kβ describes the intrinsic matrix for the j-th projection
depending on β. The patient motion and the mechanical deviations
from the system are applied by multiplying with Mα, which de-
scribes the deviation from the circular trajectory.

[
Rj |tj

]
describes

the circular trajectory and remains fixed during optimization.
The function is then solved using a gradient-based optimizer.

An analytical derivative of the objective function is available [7].
The optimization is carried out in two steps. First, the cost function
is minimized w.r.t. β and afterwards Kβ is fixed and the function
is optimized w.r.t. α. The iterative extension mentioned for the ref-
erence method is also applied for the proposed approach (illustrated
in Fig. 1c), since inaccuracies of the 3D marker position have to be
assumed due to the initialization and the patient motion. A complete
overview of the introduced methods is illustrated in Fig. 1.

2.3. Closed-Form Solution

We compare our method also with a direct determination of the pro-
jection matrices by solving a system of linear equations. For the
estimation of the 3D marker positions the projection matrices are
initialized with the ideal horizontal circular trajectory. Given the 3D
reference marker positions vi and the corresponding detected 2D
positions in the j-th projection uij we can set up a system of linear
equations, which can be solved by

argmin
p

||Ap||2, subject to ||pj ||2 = 1

argmin
p

p>A>Ap− λ(p>p− 1)
(7)

where Aj ∈ R2M×12 is the measurement matrix, which contains
the information of the 3D reference marker positions vi and the cor-
responding detected 2D positions uij . Further, pj containing all 12
entries of the j-th projection matrix Pj . Computing the zero cross-
ings of the gradient and simplifying the result yields an eigenvalue
problem

A>Ap = λp . (8)

The components of the projection matrix P are then gained from
the eigenvector belonging to the smallest eigenvalue. The iterative
extension for the reference method is also applied.
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2.4. Data Generation

For the experiment, 248 projections are acquired on 200◦. Each
projection image has 1240 × 960 pixels with 0.308mm isotropic
pixel spacing.

We used a numerical phantom that consists of three cylinders
with the materials bone marrow, femur and water and 36, 40, and
100mm radius, respectively. The markers are steel beads placed
along a helix on the surface of the outer cylinder. A thin wire with
material bone and 0.2mm diameter is placed in the isocenter, point-
ing in direction (1 1 1)> [10]. The projections are generated using
the CONRAD framework [16]. Calibrated projection matrices from
a clinical scanner and previously estimated patient motion from clin-
ical scans are used for the simulation.

Further, three clinical scans are acquired with a Siemens Artis
zeego system (Siemens Healthcare GmbH, Forchheim, Germany)
using a 10 s protocol.

3. RESULTS

3.1. Qualitative Results

In Fig. 2, reconstruction results of the motion corrupted, closed-form
solution, reference, extended reference and of the proposed approach
are shown. The first row in Fig. 2 shows part of the reconstructions
of the phantom dataset with the wire in the ROI. The wire’s shape
is not accurately reconstructed using the closed form approach and
the non-corrected reconstruction. The reference method is able to
reconstruct the elliptical cross-section of the wire but the reconstruc-
tion is affected by streaking artifacts. The extended reference and
the proposed method are able to reconstruct the shape of the wire
more clear than the reference method.

In the three bottom rows in Fig. 2, the results of the clinical
datasets are shown. Without correction, severe motion artifacts are
present. The results of the closed form method show sustained re-
constructed bone outlines but the streaking artifacts remain. The ex-
tended reference and the proposed method are able to reconstruct the
bone outlines for all clinical datasets, although slight streaks remain.
For the clinical dataset 2, the streaking artifacts for the reference
method are stronger compared to the other two methods. Note that
column 3 and 4 are rotated due to the different initialized trajectories.

3.2. Quantitative Results

The RPE’s are listed in Tab. 1. Without correction the RPE is
in general the highest compared to the other methods. The RPE
for the closed form method is lower than the RPE of the reference
method, except for the first clinical dataset, but is in each case higher
compared to the other two methods. A clear improvement could
be achieved using the extended reference method. The proposed
method shows superior results than the reference method. However,
the introduced iterative extension of the reference method yields
comparable results than the proposed method.

The point spread function (PSF) is evaluated with the full-width
at half-maximum (FWHM) [10]. In case of the phantom, the cross-
section of the wire serve as the PSF and in the clinical cases the
attached markers serve as the PSF. The FWHM values are listed in
Tab. 2. Without correction, the FWHM is not measurable. The
FWHM of the closed form approach is worse than the other two
proposed methods, except for Clinical 3, where all methods yield
comparable results. The FWHM of the reference method is slightly
higher compared to the extended reference and the proposed method.

Table 1: RPE’s in pixel for the different methods and datasets.

Phantom Clinical 1 Clinical 2 Clinical 3
No Correction 84.85 96.70 71.29 38.20
Closed Form 0.135 9.174 0.396 0.591
Reference 1.367 4.597 0.726 0.617
Ext. reference 0.088 2.099 0.143 0.561
Proposed 0.088 3.283 0.324 0.535

Table 2: FWHM (median ± std) for the different methods and
datasets.

Phantom Clinical 1 Clinical 2 Clinical 3
Closed Form 0.40±444 0.64±3.5 0.82±1.6 0.80±1.7
Reference 0.36±1.7 0.63±2.7 0.84±3.7 0.81±3.3
Ext. reference 0.35±2.6 0.63±2.7 0.82±1.3 0.82±2.4
Proposed 0.35±2.6 0.62±2.9 0.81±2.6 0.81±1.7

4. DISCUSSION

We presented a novel motion estimation and system calibration
method, which refines an ideal circular trajectory and does not re-
quire a calibration scan. For comparability we extend the reference
method with an iterative scheme to update the 3D positions and
further present a closed form solution for the projection matrices.
The proposed and the extended reference method show comparable
results, which are superior to the reference method and the closed
form solution. A similar performance of the two methods indicates
that our proposed self-calibration is able to accurately estimate the
intrinsic system parameters. Thus, a clear benefit of the proposed
method is its independence of a calibration scan, which is needed in
case of the extended reference method. This will greatly improve
the clinical work flow, required for weight-bearing acquisitions.
The improved image quality of the extended reference method and
of the novel approach will facilitate further processing steps, e.g.
measuring cartilage deformation. Both methods estimate a coherent
rigid motion using all attached markers, although the knees move
independently. Future work could extend the estimation model to
non-rigid motion to allow for independent knee motion.
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