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Abstract. C-arm cone-beam CT systems have an increasing popularity
in the clinical environment due to their highly flexible scan trajectories.
Recent work used these systems to acquire images of the knee joint under
weight-bearing conditions. During the scan, the patient is in a standing
or in a squatting position and is likely to show involuntary motion, which
corrupts image reconstruction. The state-of-the-art fully automatic mo-
tion compensation relies on fiducial markers for motion estimation. Due
to the not reproducible horizontal trajectory, the system has to be cal-
ibrated with a calibration phantom before or after each scan. In this
work we present a method to incorporate a self-calibration into the ex-
isting motion compensation framework without the need of prior geomet-
ric calibration. Quantitative and qualitative evaluations on a numerical
phantom as well as clinical data, show superior results compared to the
current state-of-the-art method. Moreover, the clinical workflow is im-
proved, as a dedicated system calibration for weight-bearing acquisitions
is no longer required.

1 Introduction

The high flexibility of C-arm cone-beam CT (CBCT) systems allow their usage
in a wide range of new applications. Recently, these systems have been used to
acquire data from knee joints under weight-bearing conditions [1, 2, 3]. For this
purpose, the C-arm has to move on a horizontal trajectory around the standing
patient. During the scan, involuntary patient motion can occur, which causes
blurring, double edges and streaks in the 3D image reconstruction. Estimation
and compensation of patient motion improves the quality of the reconstructed
images. The state-of-the-art method estimates motion based on fiducial markers,
which are attached to the patients knee [4].

However, the method requires a time consuming calibration with a calibra-
tion phantom for each scan, since the horizontal trajectory is not supported and
thus, not reliably reproducible with the used C-arm system [5]. A self-calibration
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approach would be beneficial in such a setting. Current approaches can be di-
vided into methods, which use external tools, like calibration markers or tracking
systems [6], or rely only on the acquired data [7, 8].

The proposed approach in this work uses fiducial markers to calibrate the
system, while simultaneously compensating for the patient’s motion. Hence,
dedicated time consuming calibration scans are dispensable.

2 Materials and methods

2.1 State-of-the-art motion compensation framework

The state-of-the-art motion estimation framework is introduced in the follow-
ing [4, 3]. First, a reference 3D marker position is estimated for each marker by
backprojecting the detected 2D marker positions into the volume. Then, the 3D
reference positions are registered with the detected 2D positions [9]. Afterwards,
the rigid motion consisting of three translation and three rotation parameter is
estimated, such that the reprojection error (RPE) of the projected 3D reference
marker positions on the 2D detected marker is minimized

argmin
α
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where vector α ∈ R
6J contains three rotation and translation parameters for

each projection. The matrix Mj(α) applies the rigid motion to the calibrated
projection matrix Pj ∈ R

3×4 for projection j. The estimated i-th 3D marker
position is given by vi and the corresponding detected 2D position on the j-th
projection is given by uij . The function h : R3 
→ R

2 describes the mapping
from 3D homogeneous coordinates to 2D coordinates, i.e., a division by the

third component h(n) =
(
n1

n3

n2

n3

)�
. In a last step, motion is compensated by

incorporating the estimated motion into the projection matrices and using these
updated projection matrices for the reconstruction [3, 4].

2.2 Joint motion estimation and system calibration

We face two problems if no calibration scan is performed and thus no initial esti-
mation of the projection matrices is available. Valid system matrices are needed
for the backprojection in the marker detection and for the forward projection to
evaluate the objective function. To overcome the missing calibration, we propose
to initialize with an ideal circular trajectory and to decompose the projection
matrices into an extrinsic and intrinsic matrix, such that the intrinsic parameter
estimation can be incorporated in the estimation process.

Initialization. The projection matricesPj are initialized with the ideal horizon-
tal circular trajectory based on the systems properties. The 3D marker detection
and the evaluation of the objective function can be performed sufficiently well.
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Intrinsic camera model. For the self-calibration of the system, the pro-
jection matrices need to be estimated. The decomposed projection matrix is
P = K

[
R|t

]
, where K ∈ R

3×3 is the intrinsic camera matrix and R ∈ R
4×3 and

t ∈ R
4×1 contain the extrinsic parameters. For the extrinsic matrix, three rota-

tion and three translation parameters are needed. For the projection matrices,
it is not distinguishable whether the patient or the CT system itself is moving.
These parameters are able to cover both rigid scanner and patient motion. The
intrinsic camera matrix has five degree of freedom. Assuming isotropic detector
pixels it can be further reduced to three parameters, i.e., the focal length f and
the location of the principal point cx and cy. These parameters are estimated
using an extended model by Wein et al. [7], which is well suited to the source
detector geometry. The model is given by

fx =
px
sx

· d, fy =
py
sy

· d

cx =
px
2

+
px
sx

· tan η · d, cy =
py
2

+
py
sy

· tan θ · d
(2)

where d is the source detector distance (SDD) in mm. The width and height of
the detector is given by sx and sy in mm and px and py are the width and height
of the projection image in pixels. Further, η is the angle to which the detector
is tilted with respect to the plane orthogonal to the principal axis around the
vertical detector axis v. Similarly angle θ describes the rotation around the
horizontal detector axis u.

Joint motion and system estimation. To achieve a simultaneous motion
and system calibration, the calibrated projection matrices in Eq. 1 are replaced
with the decomposition of Pj . The cost function for the joint estimation is given
by

argmin
α,β

f(α,β) = argmin
α,β
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where vector β ∈ R
3J contains the three intrinsic parameters of presented model,

for each projection. Hence, Kβ describes the intrinsic matrix for the j-th pro-
jection. The patient motion and the mechanical deviations from the system are
applied by multiplying with Mα, which describes the deviation from the ideal
circular trajectory. Further

[
Rj |tj

]
describes the initial circular trajectory and

is fixed during optimization.
The function is solved using a gradient-based optimizer. An analytical deriva-

tive of the objective function is computed, which achieves a remarkable speedup.
The optimization is carried out in two steps. First, the cost function is mini-
mized with respect to β and afterwards Kβ is fixed and the function is optimized
w.r.t. α. Additionally, an iterative scheme is applied, where the new projection
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matrices are used to obtain new, more precise 3D marker positions. In the next
iteration the updated 3D marker positions are used for the optimization. After
two iterations the resulting projection matrices contain the patient motion as
well as the system matrices for the scan.

2.3 Data and experiments

For the evaluation a numerical phantom and clinical data from three healthy
patients are used. The phantom models a simplified leg, that consists of three
encapsulated cylinders with a radii of 36, 40, and 100mm and attenuations of
bone marrow, femur and water, respectively. Beads, with an attenuation of
stainless steel, are included into the phantom on a helical trajectory on the
surface of the outer cylinder. Additionally, a wire with a diameter of 0.2mm
and with material set to bone is placed in the isocenter, pointing in direction
(1 1 1)� [8]. The projections are generated with the CONRAD framework [10]
using calibrated projection matrices with additional estimated patient motion
from clinical scans. Additionally, clinical datasets were acquired with a Siemens
Artis zeego system (Siemens Healthcare GmbH, Forchheim, Germany). The scan
range of the acquisition is 200◦ acquiring 248 projections in 10 s. Each projection
image has 1240× 960 pixels with isotropic pixel spacing of 0.308mm.

For evaluation we use quantitative metrics and visual inspection. The first
metric is the RPE, which is the result of the cost function. The second is the Full-
width at Half-Maximum (FWHM) obtained averaging 720 line profiles through
the cross-section of the wire in case of the numerical phantom and the metallic
beads in case of the clinical datasets. Note for visual inspection that row one is
rotated due to different initialized trajectories.

3 Results

We compared the proposed method with the results of the state-of-the-art method
and the results if no correction is applied. The first column in Fig. 3 shows recon-
structions of the phantom dataset with the wire in the ROI. Without correction,
motion artifacts are clearly visible: streaks are present and the shape of the wire
cannot be identified. The state-of-the-art method and the proposed approach
were able to reconstruct the elliptical cross-section of the wire. However, our
method could reconstruct the shape more clear.

The RPE’s for the phantom dataset are shown in Tab. 1. Both correction
methods could improve registration accuracy, where we obtained the best results
for the proposed method. The FWHM results are shown in Tab. 2. Without
application of motion correction, the FWHM value could not be measured, due
to strong artifacts. The state-of-the-art and the proposed method achieve com-
parable FWHM results.

Columns two to four in Fig. 3 show reconstructions of clinical datasets.
Without any correction the reconstructions of all three datasets are affected
by streaking artifacts and the bone outline can not be restored properly. Both



60 Syben et al.

Table 1. RPE in pixel for the described methods and datasets.

Dataset No Correction Berger et al. Proposed Method

Phantom 84.85 1.36 0.07

Clinical 1 96.70 6.07 0.25

Clinical 2 71.29 0.72 0.19

Clinical 3 38.20 0.59 0.43

the state-of-the-art method and the proposed method are able to improve image
quality at the bone structures for the clinical datasets. However, the proposed
method could further eliminate residual streaking artifacts that could not be
fully corrected by the state-of-the-art approach.

Without correction, the highest RPE values for the clinical datasets can be
obtained (Tab. 1). The state-of-the-art method achieves for all three clinical
datasets good RPE values. However, the RPE values of the proposed method
are the best for all three clinical datasets. The FWHM results in Tab. 2 for the
clinical dataset 1 are similar for the state-of-the-art method and the proposed
method. For clinical datasets 2 and 3 the median FWHM and the standard
deviation (std) of the proposed method are lower compared to the state-of-the-
art-method.

4 Discussion

Incorporating a self-calibration component into the state-of-the-art method shows
promising results. The proposed method is able to achieve reconstruction results,
which are superior to the results of the state-of-the-art method, yet, it does not
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Fig. 1. ROI reconstruction for the described methods and datasets.
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Dataset Berger et al. Proposed Method

(median ± std) (median ± std)

Phantom 0.36± 1.80 0.35± 1.21

Clinical 1 0.62± 3.32 0.63± 3.11

Clinical 2 0.84± 2.68 0.81± 1.31

Clinical 3 0.88± 3.22 0.81± 1.57

Table 2. FWHM (median ± std)
for the described methods and
datasets.

require a separate calibration scan. The proposed method consists of two im-
provements: an self-calibration component and the iterative scheme for updated
3D marker positions. These improvements leads to the superior performance of
the proposed method and to a less time consuming procedure. Future work will
extend the state-of-the-art method with the iterative scheme using updated 3D
reference marker positions to improve the estimation results.
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