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Abstract.

Time-resolved tomographic cardiac imaging using an angiographic C-arm device

may support clinicians during minimally invasive therapy by enabling a thorough

analysis of the heart function directly in the catheter laboratory. However, clinically

feasible acquisition protocols entail a highly challenging reconstruction problem which

suffers from sparse angular sampling of the trajectory. Compressed sensing theory

promises that useful images can be recovered despite massive undersampling by means

of sparsity-based regularization. For a multitude of reasons—most notably the desired

reduction of scan time, dose and contrast agent required—it is of great interest to know

just how little data is actually sufficient for a certain task.

In this work, we apply a convex optimization approach based on primal-dual

splitting to 4-D cardiac C-arm computed tomography. We examine how the quality

of spatially and temporally total-variation-regularized reconstruction degrades when

using as few as 6.9±1.2 projection views per heart phase. First, feasible regularization

weights are determined in a numerical phantom study, demonstrating the individual

benefits of both regularizers. Secondly, a task-based evaluation is performed in eight

clinical patients. Semi-automatic segmentation-based volume measurements of the left

ventricular blood pool performed on strongly undersampled images show a correlation

of close to 99 % with measurements obtained from less sparsely sampled data.

Keywords: C-arm Computed Tomography, Angular Undersampling, Cardiac Function,
4-D Imaging, Total Variation, Temporal Regularization. Submitted to: Phys. Med. Biol.
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1. Introduction

Time-resolved volumetric imaging of the heart during minimally invasive interventions

has the potential to offer clinicians a comprehensive overview of cardiac function without

the need to relocate the patient to a diagnostic scanner. X-ray projections acquired with

interventional C-arm systems allow for 3-D imaging by means of rotational angiography

(Hetterich et al. 2010). If an electrocardiogram (ECG) is recorded simultaneously,

retrospective multi-segment gating enables the 3-D reconstruction of multiple heart

phases, i. e. 4-D imaging.

Early approaches used as many as four rotations to collect a sufficient amount

of data to deal with angular undersampling caused by the gating process (Lauritsch

et al. 2006). However, this leads to a long scan time which entails drawbacks such

as the need for prolonged contrast agent injection and breath-hold to avoid respiratory

motion artifacts. Therefore, sophisticated few-view reconstruction techniques have been

employed in the past to obtain 4-D images from a single sweep.

One such method, originally proposed for this application by (Müller, Maier,

Schwemmer, Lauritsch, Buck, Wielandts, Hornegger & Fahrig 2014), performs non-rigid

motion estimation and subsequent motion compensation (Schäfer et al. 2006). Although

highly effective, its reliance on the ability to robustly estimate motion from preliminary,

artifact-degraded gated images inherently limits the amount of possible undersampling.

This limitation was substantially softened by later refinements in (Taubmann et al. 2015)

and (Taubmann, Maier, Hornegger, Lauritsch & Fahrig 2016). Similarly, (Wielandts

et al. 2014, Wielandts et al. 2015) employed streak reduction and registration-based

filtering, which is likewise based on deformable image registration using a B-spline

model. A potential downside of such algorithms is that the use of smooth motion models

causes remaining artifacts in the preliminary images to be interpreted as deformations.

This issue is avoided by another wide-spread approach to deal with undersampled

data known as compressed sensing. For dynamic cardiac C-arm computed tomography

(CT), its use was first suggested by (Mory et al. 2014) in the form of an algebraic

reconstruction technique with spatial and temporal total variation (TV) regularization.

Temporal regularization in particular is very useful, serving a similar purpose as motion

compensation as it facilitates the exchange of information between the individual gated

projection subsets, thereby utilizing the whole scan. (Taubmann, Lauritsch, Krings

& Maier 2016) compared different temporal regularizers and confirmed the benefits of

temporal TV (tTV) minimization. Previously, (Haase et al. 2016) had adopted the

iTV scheme by (Ritschl et al. 2011, Ritschl et al. 2012) in the same framework. All

of these studies used conventional gradient descent for TV minimization. Recently,

convex optimization schemes involving variable splitting and proximal operators have

gained increasing popularity in the field due to their desirable convergence properties.

While (Mory & Jacques 2014) reformulated their earlier work as a convex optimization

algorithm in accordance with (Chambolle & Pock 2011), they did not show any results

obtained using such an implementation.
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Figure 1. Strict ECG gating uses one view per cardiac phase from each heart cycle.

In this work, we apply a convex optimization approach based on primal-dual

splitting to 4-D cardiac C-arm CT. We examine how the quality of spatially and

temporally TV-regularized reconstruction degrades when using very few projection

views (≈7 per phase). When only few views are required, the clinical image acquisition

protocol becomes more flexible, offering the possibility to reduce scan time, dose and

contrast agent burden. After demonstration in a numerical phantom, a task-based

evaluation is performed in eight clinical patients. It focuses on the ability to quantify

and visualize cardiac function using a semi-automatic model-based segmentation of the

left ventricle (LV).

2. Methods

2.1. Strict Electrocardiogram Gating

During C-arm rotation of a few seconds duration, the heart completes several full cycles

(shaded areas in Fig. 1). In each cycle, several heart phases (circles in Fig. 1) can be

defined based on the relative distance to the two neighboring R-peaks in the ECG. The

number of views available for each phase is determined by the number of heart cycles

available. To ensure consistency, strict gating chooses exactly one image from each heart

cycle, namely the one which is closest in terms of the relative heart phase. This implies

that some images may be left out if they are not the best fit for any of the desired

phases. Conversely, an image may be used multiple times if it is the best fit for more

than one phase.

2.2. Spatially and Temporally TV-regularized Reconstruction

Due to ECG gating, only few projection views are available. Therefore, we formulate

4-D reconstruction as a regularized optimization problem. Below, we define a suitable

objective function and describe how to optimize it by means of a proximal algorithm.

2.2.1. Objective Function Let i ∈ RNph·Nvox denote the vector obtained by stacking

the voxels of all volume images to be reconstructed, with Nph and Nvox the numbers of

cardiac phases and voxels per volume, respectively. We call the vectorized representation

of the measured line integral data, selected and sorted by the gating process, p ∈
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RNproj·Npix , with Nproj the number of projection images and Npix the number of detector

pixels. The geometry of the tomography problem is described by the system matrix

A ∈ R(Nproj·Npix)×(Nph·Nvox), which represents the X-ray projection operator associating

the 4-D image i with the measured data p.

As the data fidelity term, we choose the squared residual r(i) = 1
2
‖Ai − p‖22.

The spatial TV norm ‖i‖sTV = ‖Dsi‖1,2 is defined as the sum (L1-norm) of the

magnitudes (L2-norm) of the spatial image gradient, calculated using the element-wise

spatial forward difference operator Ds,

Ds : ix,y,z,t 7→

 ix+1,y,z,t − ix,y,z,t
ix,y+1,z,t − ix,y,z,t
ix,y,z+1,t − ix,y,z,t

 , (1)

with zero boundary conditions. ix,y,z,t denotes the element of i corresponding to the

voxel at the spatial indices (x, y, z) into the reconstruction grid of the cardiac phase with

index t. Similarly, the temporal TV norm ‖i‖tTV = ‖Dti‖1 is based on the element-wise

forward difference Dt : ix,y,z,t 7→ ix,y,z,t+1− ix,y,z,t along the temporal dimension, applied

with periodic boundary conditions due to the cyclic nature of cardiac motion. The full

reconstruction problem with λs, λt > 0 as the regularizer weights then reads,

arg min
i

r(i) + λs · ‖i‖sTV + λt · ‖i‖tTV + ιR+(i), (2)

where ιR+ is the characteristic function of R+, enforcing non-negativity on the solution.

2.2.2. Convex Primal-Dual Optimization Popular optimization schemes for such

problems are based on primal-dual splitting and proximal operators (Chambolle &

Pock 2011), specifically soft-thresholding in the case of L1 minimization. Our objective

function consists of both a smooth, i. e. differentiable part r(i) as well as non-smooth yet

proximable parts, albeit in linearly transformed domains in case of the L1 components.

This type of function lends itself well for optimization using the proximal splitting

algorithm derived in (Condat 2013) and later applied by the same author to TV-

regularized inverse imaging problems (Condat 2014). Due to its full-splitting approach,

it relies on “simple” operations only and requires no nested loops, i. e. avoids the need

to approximate the TV proximal operator, which has no closed-form solution, within

each iteration. Adapted to our task with a trivial relaxation factor of 1, one iteration of

Algorithm 1 in (Condat 2014) simplifies to applying the updates given in Algorithm 1

in our paper. For a comprehensive derivation of the algorithm as well as a proof of

convergence, we would like to refer the reader to (Condat 2013). A practical description

of the steps involved is given in the following paragraph.

Through alternating updates, the algorithm iteratively finds the optimal values of

three variables: i ∈ RNph·Nvox , which converges to the desired image solution (primal

domain), as well as gs ∈ R3·Nph·Nvox and gt ∈ RNph·Nvox , which correspond to the spatial

and temporal image gradient of i, respectively (dual domain). gs is three times as large

as i as it holds a 3-vector for each image voxel. At the start, we initialize the estimates
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Algorithm 1 Updates of the proximal reconstruction algorithm.

1: iprev ← i

2: i←
(
i− τ(∇i r(i) + D>s gs + D>t gt)

)
+

3: gs ← proxσ(λs‖·‖1,2)∗(gs + σDs(2i− iprev))

4: gt ← proxσ(λt‖·‖1)∗ (gt + σDt(2i− iprev))

for i, gs and gt with zeros. In the first line of Algorithm 1, the primal estimate i of the

previous iteration is temporarily stored. In the second line, a gradient descent step is

performed by subtracting ∇i r(i) = A>(Ai−p), which amounts to a back-projection of

the residual error Ai−p, scaled by the primal step length τ . The current dual estimates

gs and gt are mapped back to the primal domain by the adjoints of the linear operators

and are used to modify the descent direction. The adjoint D>� of a (forward difference)

gradient operator D� is given as the (backward difference) divergence operator negated.

Subsequently, non-negativity is enforced element-wise on the image by the proximal

operator of ιR+ , (·)+ : i 7→ max{i, 0}. In the third line, the first dual estimate gs

is updated by adding an extrapolation of the latest primal estimates, brought to the

gradient domain by Ds and scaled with the dual step length σ. The extrapolation

approximates a so-called extragradient step in order to improve convergence (Chambolle

& Pock 2011). This is followed by the evaluation of the proximal operator of the convex

conjugate (Fenchel-Rockafellar conjugate) of the scaled norm λs || · ||1,2 associated with

Ds in Eq. 2,

proxσ(λs‖·‖1,2)∗ : v 7→

{
v/max{‖v‖2/λs, 1} if λs > 0,

0 otherwise,
(3)

which can be understood as the projection of each component vector v in gs onto a ball

with radius λs. Note that the proximal operator of the convex conjugate f ∗ of a function

f can be derived from the proximal operator of f by the Moreau identity (Condat 2014),

proxσf∗(x) = x− σ proxf/σ(x/σ), for σ > 0. (4)

In the fourth line, the same steps are performed analogously for the second dual estimate

gt, with the corresponding proximal operator,

proxσ(λt‖·‖1)∗ : g 7→

{
g/max{|g|/λt, 1} if λt > 0,

0 otherwise.
(5)

The primal and dual step lengths τ and σ are chosen to satisfy the convergence

criterion τ
(
β
2

+ σ‖D>s Ds + D>t Dt‖
)
< 1, where β denotes the Lipschitz constant of

∇i r(i) and ‖ · ‖ the operator norm. For our task, an ordered subset scheme replacing

the ∇i r(i) update, as it is often employed to improve convergence speed, is not crucial

as the gating subsets already possess favorable angular distributions (cf. Fig. 1).

2.3. Cardiac Function Analysis
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→ →

Figure 2. From the reconstructed image (left), the LV endocardium surface is

segmented (center) and projected onto a polar map divided into 16 segments as

suggested by the American Heart Association (right).

2.3.1. Segmentation Segmentation is performed by fitting a shape model of the LV

endocardium to the reconstructed images (Fig. 2). The model consists of 544 vertices

arranged in 17 rings distributed along the LV long axis plus a single vertex at the apex.

Fitting is a two-step procedure: First, the pose is determined, i. e. a bounding box

defining the position, orientation and size of the object. This is done manually as the

data available in our study is not sufficient for training an automatic pose detector.

The pose estimate chosen for each case is consistent over all volumes—regardless of

cardiac phase and undersampling setting—to rule out the influence of manual variability.

Secondly, the model mean shape is transformed according to the pose and subsequently

deformed by an automatic boundary detector such that it fits the edges present in the

image (Zheng et al. 2008). The boundary detector is trained in a leave-one-case-out

fashion to ensure the separation of training and test data while still maintaining a

high detection quality. As a post-processing step, the surfaces are refined as described

in (Zheng et al. 2009) by maximizing their smoothness under the constraint that the

blood pool be tightly enclosed.

2.3.2. Volumetry and Motion Visualization From the segmented surfaces, the blood

pool volumes in end-diastole and end-systole are calculated. In addition, similar

to previous work of (Müller, Maier, Zheng, Wang, Lauritsch, Schwemmer, Rohkohl,

Hornegger & Fahrig 2014), a visualization of the contraction pattern is provided by

color-coding the displacement of each vertex between end-systole and end-diastole and

projecting the resulting mesh onto a polar map according to the 16-segment model

suggested by the American Heart Association (Cerqueira et al. 2002) (Fig. 2, right).

2.4. Experiments

2.4.1. Phantom Study The purpose of our phantom study is twofold. First, to

demonstrate the achieved image quality of the proposed reconstruction algorithm both

visually and quantitatively in a controlled environment. Secondly, to serve as a
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reproducible way of determining feasible regularizer weights λs, λt. Note that while

these may not be ideal for clinical data, in order to offer a fair evaluation, we refrain

from adapting the parameters to each case individually as this is typically impractical

in a realistic scenario as well.

We automatically normalize for differences in the acquisition or reconstruction

settings which would alter the relative strength of regularization,

λs =
Nproj · voxel-size2

detector-pixel-size2 ·Nph

· λ∗s , λt =
Nproj · voxel-size3

detector-pixel-size2
· λ∗t . (6)

Feasible parameters are determined in a small grid search, (λ∗s , λ
∗
t )
> ∈ G × G, G =

{0, 2−5, 2−4, 2−3, 2−2, 2−1}·10−2. We choose the optimal parameters λ∗s,opt, λ
∗
t,opt such that

the result exhibits the lowest root-mean-square error (RMSE) compared to a reference

image reconstructed from static and fully-sampled projection data.

Our data set is based on the XCAT phantom (Segars et al. 2010). Projection

images are generated with a polychromatic spectrum using the CONRAD software

(Maier et al. 2012, Maier et al. 2013). The spectrum is discretized in energy bins 5 keV

wide from 10 keV to 90 keV (peak energy), with a time-current product of 2.5 mAs

per X-ray pulse. For bones and bone marrow, material properties match the mass

attenuation coefficients found in the NIST X-ray table‡. Contrasted blood in the LV and

aorta is simulated as iodine-based contrast agent (Ultravist-150, Bayer AG, Leverkusen,

Germany) mixed with equal parts water. All other structures are modeled with the

absorption behavior of water for modified densities. The simulated acquisition protocol

and reconstruction parameters are identical to those in the clinical data sets described

below (section 2.4.2). Several projection data sets are generated: A static version in

end-diastole for reconstruction of a reference image as mentioned above and dynamic

versions with Nb = 12, 10, 8, 6 and 4 heart beats to examine the effect of a gradual

reduction of the number of views. Assuming a scan time of t seconds, they correspond

to heart rates of Nb

t
· 60 bpm. We reconstruct Nph = 8 cardiac phases, resulting in a

total of (Nph · Nb) projections that are used per data set. No respiratory motion was

simulated.

2.4.2. Experiments on Clinical Data In addition to demonstrating that useful images

can also be obtained in practice, the purpose of our experiments on clinical patient

data is to quantify errors and potential bias when assessing left ventricular function

in the reduced setting. The patients suffer from congenital heart disease and undergo

catheter-based procedures related to malformations of their cardiovascular system. The

scans we use are routinely acquired to obtain 3-D reconstructions for intraprocedural

guidance; retrospectively, 4-D reconstruction of the same data is performed offline for

research purposes only. Hence, treatment of the patients is not influenced in any way by

our study. Eight data sets are acquired with an Artis zee biplane (Siemens Healthcare

GmbH, Forchheim, Germany). At approx. 30 Hz, 133 projection images are captured

‡ http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html

http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
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with an angular increment of 1.5◦ during a 5 s rotation of the C-arm. This results

in a short scan with 200◦ coverage. The isotropic pixel resolution is 0.31 mm/pixel

(0.21 mm/pixel in isocenter), the detector size Npix = 9602 pixels. All images are

iteratively reconstructed on a grid of Nvox = 2563 voxels covering a volume of (25.6 cm)3

over Nph = 8 heart phases. Optimization is run for 200 iterations. In all cases, contrast

agent is injected selectively via a catheter to ensure visibility of the LV. In some cases,

other parts of the heart or the vascular system, which we do not evaluate, are contrasted

as well. A cathether containing electrodes is inserted into one of the cardiac chambers.

This pacing catheter acts as a temporary pacemaker lead that electrically excites cardiac

tissue, thereby triggering its contraction, in order to control the heart rate, which is

known as electrophysiological pacing. It is used to artificially increase the frequency of

the heart beat during the scan. The pacing rate and number of projections is listed

in Tab. 1 for each data set. All patients are anesthetized during image acquisition.

Complete apnea is induced to avoid any respiratory motion.

To simulate a “reduced” setting in the clinical data, we retrospectively leave out

the projection images of every second heart beat in the acquisition, thus reducing the

number of views by half (Fig. 3, left). This reduction is artifical and does not correspond

directly to situations of reduced heart rate or scan time. Overall, the remaining images

are no longer distributed equidistantly along the trajectory as retained and skipped

angular sections alternate. However, considering any individual phase, the images

it is reconstructed from are still distributed equidistantly, now with an angular step

that is twice as large as it was originally (arrows in Fig. 3). Please note that in this

regard, i. e. the angular distribution per phase, this simulated setup is highly similar to

a (hypothetical) acquisition at half heart rate (Fig. 3, right). In such an acquisition, for

the temporal resolution w. r. t. one heart cycle to remain constant, half of the original

frame rate would be sufficient: The same number of frames would be acquired per cycle

as each cycle is twice as long. Leaving all other parameters unchanged, this approach

thus also simulates a dose reduction by about 50% as dose scales linearly with the

number of images. This is the case since the emission of radiation is pulsed, i. e. the

X-ray tube is not emitting continously during the scan. Note that this is an idealized

calculation based on a simplified physiological model where the heart cycle is scaled

uniformly in time with varying heart rate, which is not entirely realistic.

2.5. Implementation

Reconstruction was implemented in C++ with a focus on both runtime and flexible

object-oriented design, allowing for easy modification of data fidelity terms and arbitrary

combinations of norms and linear transforms for regularization. All relevant components

were optimized for parallel computation on a graphics processing unit (GPU) using

CUDA. On a machine equipped with 32 GB RAM, an Intel Xeon E5-1620 v2 CPU (Intel

Corporation, Santa Clara, CA) and an Nvidia Quadro K4000 GPU (Nvidia Corporation,

Santa Clara, CA), 4-D reconstruction is completed in about half an hour (less than 10 s
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Figure 3. Skipping the data associated with every second heart beat allows an

artificial simulation of fewer views. The angular configuration for each individiual

cardiac phase is somewhat similar to a (hypothetical) scan at half heart rate.

per iteration). Detection and refinement of the LV boundary take 2.8 s per case.

3. Results

3.1. Phantom Study

The results of the grid search are summarized in Fig. 4 and Tab. 2. Both spatial

and temporal TV are effective in reducing the error compared to the non-regularized

result. Notably, the quantitative improvement is more pronounced for temporal

TV. The parameterization (λ∗s,opt, λ
∗
t,opt) = (2−4, 2−3) · 10−2, i. e. a combination of

both regularizers, produces an image with few artifacts as well as a fairly accurate

representation of the anatomy (Fig. 4, top left) and achieves the lowest overall RMSE

(59.7 HU). It is therefore used in all other reconstructions. In the over-regularized

regime, the error slowly increases again, albeit not as quickly since only a small

fraction of all voxels is affected by the loss of resolution that becomes apparent in

Table 1. Pacing rates and numbers of projections for the clinical patient data sets.

For each patient, a total of 133 projections are acquired, from which we reconstruct 8

cardiac phases. In the two rightmost columns, the total number of distinct projections

is listed, i. e. projections used in more than one phase are only counted once.

Data set Heart rate Projections per phase Total unique projections

in bpm (original) (reduced) (original) (reduced)

Patient 1 240 19 9 125 62

Patient 2 204 17 8 123 60

Patient 3 180 14 7 110 55

Patient 4 168 12 6 95 47

Patient 5 140 12 6 93 45

Patient 6 204 15 7 114 54

Patient 7 180 14 7 109 54

Patient 8 150 11 5 88 40

mean± std. dev. 183.3± 32.3 14.3± 2.7 6.9± 1.2 107.1± 13.9 52.1± 7.5
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Figure 5. Images reconstructed from the phantom data (top: 4, 6 and 8 views per

phase, bottom: 10 and 12 views per phase). The grayscale window is [center,width] =

[300, 2600] HU. The plot shows the corresponding root-mean-square errors (RMSE).



TV-Regularized Reconstruction for 4-D Cardiac C-arm CT 11

Figure 6. Images obtained by ungated reconstruction of the phantom data set

comprising 12 heart cycles from all 133 projection images (axial, coronal and sagittal

slices). The grayscale window is [center,width] = [300, 2600] HU.

the corresponding image (Fig. 4, bottom right).

The effect of reducing the number of heart beats and, therefore, the views per

phase is illustrated in Fig. 5. Increasingly strong artifacts can be observed, yet most

anatomical structures appear reasonably well preserved even when only six views per

phase are available. The reconstruction error rises disproportionately, e. g. by 61.2 HU

from six to four views, in contrast to an increase of only 46.8 HU from twelve to six

views (cf. Fig. 5, bottom right).

For reference, Fig. 6 shows the result obtained by ungated reconstruction from all

133 projection images of the phantom data set comprising twelve heart beats. While

static regions above and below the heart are reconstructed well due to sufficient data,

inconsistent motion states lead to strong blur and artifacts in the anatomic region of

interest, which is also reflected in the RMSE (82.0 HU).

3.2. Clinical Data

In the clinical data shown in Fig. 7, image quality is degraded in the reduced setting as

some anatomic structures become blurred and additional streak artifacts are introduced

Table 2. Root-mean-square errors (RMSE) to the ground truth in HU for all tested

combinations of regularizer weights. The best value achieved is highlighted. Selected

visual results are shown in Fig. 4.

λ∗t = 0 λ∗t = 2−5

102
λ∗t = 2−4

102
λ∗t = 2−3

102
λ∗t = 2−2

102
λ∗t = 2−1

102

λ∗s = 0 267.6 136.3 114.2 113.0 119.7 127.5

λ∗s = 2−5

102
231.3 105.2 74.9 70.1 80.0 91.5

λ∗s = 2−4

102
219.1 95.1 64.3 59.7 71.2 84.1

λ∗s = 2−3

102
206.7 89.9 63.1 59.9 71.3 84.3

λ∗s = 2−2

102
193.4 96.1 77.8 76.2 85.3 96.3

λ∗s = 2−1

102
181.3 114.6 104.6 104.2 110.8 119.4
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Figure 7. Images reconstructed from the original and reduced data at end-diastole.

The grayscale window is [center,width] = [740, 3480] HU for the original and reduced

images, and [center,width] = [0, 3480] HU for the difference images. Below the images,

the root-mean-square difference of the volumes in HU is given.
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Figure 8. Scatter plots (left) and Bland-Altman plots (right) of end-systolic volumes

(top) and end-diastolic volumes (bottom) estimated from original vs. reduced data.

emanating from catheters. The slight deterioration of resolution is due to the fact that

with less data being available, optimization needs to rely more on the regularization

terms which favor a homogeneous image appearance. Nevertheless, the LV boundary

is reconstructed similarly well in most patients, which can be seen from the volumetry

results in Fig. 8. Both end-systolic and end-diastolic volumes estimated from the reduced

and original data show a Pearson correlation coefficient of nearly 99 % (Fig. 8, left). In

each, there appears to be a small bias of less than 3 ml, with the 95 % confidence interval

of the difference falling just below 11 ml in end-diastole at its extreme (Fig. 8, right).

We perform a two-tailed paired t-test to assess these apparent biases, which reveals that

they are not statistically significant. We obtain p-values of 0.0772 and 0.0769 for the

end-systolic and end-diastolic volumes, respectively. Therefore, it cannot be concluded

that the differences constitute a systematic error.
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Figure 9. Polar maps of the magnitude of motion between end-diastole and end-

systole per surface vertex. The darkest blue and brightest red hues correspond to zero

and maximum motion (determined per case and setting), respectively.

In the polar maps displayed in Fig. 9, the regions of strongest contraction match

quite well in most patients. In some cases, e. g. for patients 5 and 6, additional such

regions appear erroneously when edges are mislocated due to the impaired image quality.

Also, regions of comparatively little motion in the original data may be obscured by

artifacts in the reduced setting, which is most prominent in patients 1 and 3.

4. Discussion

4.1. Interpretation of the Results

The grid search demonstrates that temporal TV by itself improves reconstruction quality

more than spatial TV (cf. Fig. 4), even though it only operates along one dimension

of the 4-D image as opposed to three. To understand why this is the case, one has

to consider that a very small fraction of all reconstructed image voxels coincide with

observably dynamic anatomy such as the endocardial wall (blood pool boundary). The

vast majority shows virtually static image content such as the lungs, spine and ribs,

or air in the background. Since these parts of the object are captured faithfully in

all gating subsets, temporal regularization, which penalizes inconsistent changes over
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time and thus substantially restricts the high-dimensional solution space, is so effective.

In this way, redundancy in the temporal domain can be leveraged to obtain a more

consistent solution. Combined with the denoising capabilities of spatial TV, the achieved

image quality exceeds what 3-D reconstruction from only a couple of views can typically

provide.

In most clinical cases, while the correlation of the volumetric measurements was

nearly perfect, both end-diastolic and end-systolic volumes were overestimated rather

than underestimated in the reduced setting. While the difference is not statistically

significant, it could be due to the fact that blurring makes the blood pool appear

somewhat larger (cf. Fig. 7), causing the boundary detector to locate its edge slightly

outwards from its actual position. To some extent, it may be possible to specifically

address this in the design of the segmentation algorithm, which is beyond the scope of

this paper. The polar maps of Fig. 9 suffer from artifacts in the images reconstructed

from reduced data. While the consistently reliable localization of “hot spots” is

promising, at this time it must remain unclear whether the achieved accuracy is sufficient

for clinically relevant use cases, which have not yet been established as development of

dynamic interventional imaging is still in a very early stage. Should it be insufficient,

denser angular sampling may yet be required.

4.2. Practical Considerations

Essentially, a key requirement for potential applications of 4-D cardiac C-arm CT is

ensuring a sufficient number of heart cycles acquired during the scan. This leads to a

trade-off as it can be achieved either by a sufficiently high heart rate, possibly enforced

through electrophysiological pacing, or by a sufficiently long scan time. The former

can alter the natural contraction patterns and, thereby, the heart motion, limiting the

explanatory power of the images. The latter is feasible in principle, but limited by, e. g.,

the need for a prolonged contrast injection which may be harmful for the patient. In

prior work, scan protocols with acquisition durations of about 10 s (Mory et al. 2014) and

15 s (Müller, Maier, Schwemmer, Lauritsch, Buck, Wielandts, Hornegger & Fahrig 2014)

were used.

The importance of such considerations motivated us to conduct this study,

which constitutes a technical investigation of state-of-the-art compressed sensing

reconstruction applied to clinical data as well as its behavior and potential performance

under data degradation. However, the presented results are not meant to claim

sufficiency of a certain amount of projection data or, correspondingly, recommend a

certain dose level for use in the clinical workflow. For specific applications, as well as

for other tasks with potentially different requirements, further studies will be required

for validation. It also has to be noted that our clinical cases are limited in number and

somewhat heterogeneous regarding the pacing and contrasting protocol. Despite this,

the achieved results are consistent and stable.
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5. Conclusion and Outlook

Spatially and temporally TV-regularized reconstruction is effective in recovering

dynamic cardiac images from as few as 6.9 ± 1.2 projection views per heart phase.

In clinical patients, segmentation-based volumetry can be performed with very high

correlation and only little bias compared to less sparsely sampled data. Additionally,

visual exploration of local contraction patterns appears to be feasible to a certain extent,

but clinical studies will be mandatory to validate whether this is sufficient for basing

potential treatment decisions on the employed visualizations.

In the future, the proposed reconstruction could be enhanced by incorporating more

sophisticated data fidelity models, such as a noise model for statistical ray weighting,

or improving convergence by, e. g., pre-conditioned optimization, cf. (Xu et al. 2016).

Regarding regularization, the image characteristic of TV is helpful for segmentation and

in turn volumetry, which was the goal in our study. For other purposes, smoother priors

based on, for instance, wavelet transforms may be preferable and could be investigated

in the same framework.
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