Background Matters: A Correction Scheme for Dynamic Iterative CBCT with Limited Grid Size

Oliver Taubmann, Gunter Lauritsch, Gregor Krings, Andreas Maier
1 Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
2 Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany
3 Siemens Healthcare GmbH, Forchheim, Germany
4 University Medical Center Utrecht, Netherlands

Introduction

- Truncation of the object in image space (volume of interest, VOI) and/or on the detector (field of view, FOV) is detrimental to iterative reconstruction (cupping, streaks, ...)
- A large reconstruction grid (VOI) can help alleviate these problems, but may be prohibitive in complex dynamic reconstruction tasks [1]

Materials and Methods

- Simplifying model assumptions:
 i. Dynamic content is inside VOI, outside ("background") is static
 ii. Background can be (pre-)computed with static reconstruction
- Method derived from these assumptions:
 a. Reconstruct static image from all data on grid larger than VOI
 b. Separate static image into VOI and background (BG)
 c. Perform dynamic reconstruction on VOI incorporating BG into forward projection of current image estimate i:

$$\bar{A}(i + i_{BG}) - p = A_i + A i_{BG} - p = A_i - (p - A i_{BG})$$

Corrected data p_{corr}

Efficiently precomputable, dynamic reconstruction remains unaltered!

Experiments

- XCT phantom: Correlation coefficient (CC) w. r. t. ground truth
- Clinical patient data set: Qualitative comparison
- Static reconstruction: Gradient descent (20 iterations)
- Dynamic reconstruction: Spatio-temporally total-variation-regularized 4-D method [2] (180 iterations, 8 cardiac phases)
- VOI-limited: FOV larger than VOI, grid truncation is limiting
- FOV-limited: VOI larger than FOV, data truncation is limiting
- Comparison:
 - Uncorrected: static, then dynamic (both: 256³ voxels)
 - Corrected: static (512³), correction, then dynamic (256³)

Results

<table>
<thead>
<tr>
<th>VOI-limited case (in end-diastole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncorrected</td>
</tr>
<tr>
<td>Corrected</td>
</tr>
<tr>
<td>CC: 19,1%</td>
</tr>
<tr>
<td>CC: 93,5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOV-limited case (in end-diastole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncorrected</td>
</tr>
<tr>
<td>Corrected</td>
</tr>
<tr>
<td>CC: 96,4%</td>
</tr>
<tr>
<td>CC: 97,3%</td>
</tr>
</tbody>
</table>

Contact

oliver.taubmann@fau.de
http://www5.cs.fau.de/~taubmann

We gratefully acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German excellence initiative. The concepts and information presented in this paper are based on research and are not commercially available.