Spatio-temporally Regularized 4-D Cardiovascular C-arm CT Reconstruction Using a Proximal Algorithm

Oliver Taubmann¹,²,* , Mathias Unberath¹,²,* , Guenter Lauritsch³ , Stephan Achenbach⁴, Andreas Maier¹,²

¹ Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
² Erlangen Graduate School in Advanced Optical Technologies (SAOT), Germany
³ Siemens Healthcare GmbH, Forchheim, Germany
⁴ Department of Cardiology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany

* These authors contributed equally to this work

April 19, 2017 – Melbourne, Australia

IEEE International Symposium on Biomedical Imaging (ISBI)
Coronary Rotational Angiography

Fig.: Artis zeego multi-axis C-arm system, Siemens Healthcare GmbH, Forchheim, Germany.
Coronary Rotational Angiography

- 3-D anatomy of vascular trees considered beneficial [1]
 - Diagnostic assessment
 - Interventional guidance

- Requires cardiac motion management
 - Slow gantry rotation
 - ECG gating yields very few views

Coronary Rotational Angiography

- Volumetric (tomographic) reconstruction
 - Usually requires more (consistent) data
- Compressed sensing exploits image properties
 - Total variation: Ideal images are sparse in gradient domain [1]
 - Temporal regularization addresses insufficient data more effectively [2]

Temporal Regularization vs. Undersampling

Reconstructed Phases

Measured Projections

Cardiac Phase 1 Cardiac Phase 2 Cardiac Phase 3
Vessel Extraction [1]

- Thorax is truncated, arteries are not
- Truncation can cause artifacts in tomographic reconstruction
- Perform single-frame background subtraction [1]

Electrocardiogram Gating

- Vessel images grouped into subsets (gates) based on ECG

- Trade-off:
 - Wider windows → More data per gate, higher inconsistency
 - Narrower windows → Less inconsistency, strongly undersampled
Electrocardiogram Gating

● **Our approach:**
 ● Minimize residual motion (select only best fit from each cycle)
 ● Choose the total number of gates such that all data is used
 ● Compensate for undersampling by temporal regularization
Tomographic 4-D Reconstruction

\[\arg\min_i \ r(i) + \lambda_s \cdot \|i\|_{sTV} + \lambda_t \cdot \|i\|_{tTV} + \nu_{\mathbb{R}^+}(i) \]

Global convex objective function comprised of…

- Data fidelity
- Sparsity in spatial gradient domain
- Sparsity in temporal gradient domain
Objective Function – Data Fidelity

\[
\arg \min_i r(i) + \lambda_s \cdot \| i \|_{STV} + \lambda_t \cdot \| i \|_{TV} + \lambda_{\mathbb{R}^+}(i)
\]

\[
r(i) = \frac{1}{2} \| A i - p \|_2^2
\]

Squared residual norm

\[
i \in \mathbb{R}^{N_{ph} \cdot N_{vox}}
\]

Voxels to reconstruct (vectorized 4-D image)

\[
p \in \mathbb{R}^{N_{proj} \cdot N_{pix}}
\]

Measured line integrals after gating

\[
A \in \mathbb{R}^{(N_{proj} \cdot N_{pix}) \times (N_{ph} \cdot N_{vox})}
\]

X-ray projection operator

\[
\lambda_{\mathbb{R}^+}
\]

Characteristic function for non-negativity
Objective Function – TV Regularization

$$\arg\min_i r(i) + \lambda_s \cdot \|i\|_{sTV} + \lambda_t \cdot \|i\|_{tTV} + \mathcal{L}_{\mathbb{R}^+}(i)$$

$$\|i\|_{sTV} = \|D_s i\|_{1,2} \quad \text{Spatial TV norm (sum of spatial gradient magnitudes)}$$

$$\|i\|_{tTV} = \|D_t i\|_1 \quad \text{Temporal TV norm (sum of temporal gradients)}$$

$$D_s \quad \text{Spatial forward-difference operator (zero boundary)}$$

$$D_t \quad \text{Temporal forward-difference operator (periodic)}$$

$$\lambda_s, \lambda_t \quad \text{Regularizer weights}$$
Optimization – Proximal Algorithm by Condat [1]

\[i_{\text{prev}} \leftarrow i \]
\[i \leftarrow (i - \tau(\nabla r(i) + D_s^T g_s + D_t^T g_t))_+ \]
\[g_s \leftarrow \text{prox}_{(\lambda_s \cdot \cdot_1^2)}(g_s + \sigma D_s(2i - i_{\text{prev}})) \]
\[g_t \leftarrow \text{prox}_{(\lambda_t \cdot \cdot_1)}(g_t + \sigma D_t(2i - i_{\text{prev}})) \]

Updates given by full primal-dual splitting

- TV proximal operator (no closed-form solution) replaced by linear transforms and L^1 / L^{1,2} proximal operators (analytic solution)
- Therefore: “simple” operations only, no nested loops

Experiments

- **CAVAREV [1]**
 - Overview
 - Platform for evaluating cardiac vasculature reconstruction
 - Dynamic numerical phantom derived from patient data
 - Projections simulated using acquisition geometry of a real C-arm
 - Specifics
 - **7 heart cycles**, 133 projection images
 - Variant without respiratory motion (breathhold assumption)
 - 19 (= 133/7) gates, 256³ voxels of isotropic size 0.5 mm

Experiments

- Exemplary clinical patient data set
 - Device: Artis one (Siemens Healthcare GmbH, Forchheim, Germany)
 - 5 heart cycles, 133 projections (4s rotation)
 - 27 (≈133/5) gates, 256³ voxels of isotropic size 0.5 mm
 - Qualitative evaluation (visual inspection)
Results: CAVAREV

<table>
<thead>
<tr>
<th>Method</th>
<th>Dice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard FDK</td>
<td>0.431</td>
</tr>
<tr>
<td>ECG-Gated FDK</td>
<td>0.595</td>
</tr>
<tr>
<td>Dynamic Level Sets [Keil 2009]</td>
<td>0.692</td>
</tr>
<tr>
<td>PICCS [Wu 2011, Chen 2012]</td>
<td>0.726</td>
</tr>
<tr>
<td>L1 minimization [Wu 2011, Li 2004]</td>
<td>0.730</td>
</tr>
<tr>
<td>Streak-Red. Gated FDK [Rohkohl 2008]</td>
<td>0.744</td>
</tr>
<tr>
<td>Resid. Motion Comp. [Schwemmer 2013a]</td>
<td>0.776</td>
</tr>
<tr>
<td>Spatial Total Variation [Wu 2011]</td>
<td>0.785</td>
</tr>
<tr>
<td>Motion Compensation [Schwemmer 2013b]</td>
<td>0.823</td>
</tr>
<tr>
<td>Spatio-temporal TV (proposed)</td>
<td>0.876</td>
</tr>
</tbody>
</table>
Results: CAVAREV

![Graphs showing Dice score over iteration and relative heart phase.](image-url)
Results: CAVAREV

MIP
Results: Clinical Data

Temporal + Spatial TV
Summary and Outlook

● Key idea:
 ● Minimize residual motion within each gate
 ● Exploit all data by spatio-temporal regularization

Potential extensions:

● Temporal regularization for background subtraction
 ● Reduce inconsistency due to segmentation errors

● Respiratory motion compensation
 ● E.g. based on Fourier-domain or epipolar consistency conditions
 ● Applicable since extracted vessel images are not truncated
Thanks for your attention!

Questions?