

Spatio-temporally Regularized 4-D Cardiovascular C-arm CT Reconstruction Using a Proximal Algorithm

Oliver Taubmann^{1,2,*}, Mathias Unberath^{1,2,*}, Guenter Lauritsch³, Stephan Achenbach⁴, Andreas Maier^{1,2}

- ¹ Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
- ² Erlangen Graduate School in Advanced Optical Technologies (SAOT), Germany
- ³ Siemens Healthcare GmbH, Forchheim, Germany
- ⁴ Department of Cardiology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
- * These authors contributed equally to this work

April 19, 2017 - Melbourne, Australia

IEEE International Symposium on Biomedical Imaging (ISBI)

Coronary Rotational Angiography

Fig.: Artis zeego multi-axis C-arm system, Siemens Healthcare GmbH, Forchheim, Germany.

Coronary Rotational Angiography

- 3-D anatomy of vascular trees considered beneficial [1]
 - Diagnostic assessment
 - Interventional guidance
- Requires cardiac motion management
 - Slow gantry rotation
 - ECG gating yields very few views

[1] Çimen et al.: **Reconstruction of Coronary Arteries from X-ray Angiography: A Review**, Med Image Anal 2016

Coronary Rotational Angiography

- Volumetric (tomographic) reconstruction
 - Usually requires more (consistent) data
- Compressed sensing exploits image properties
 - Total variation: Ideal images are sparse in gradient domain [1]
 - Temporal regularization addresses insufficient data more effectively [2]

[1] Wu et al.: Total Variation Regularization Method for 3-D Rotational Coronary Angiography, Bildverarbeitung für die Medizin 2011

[2] Taubmann et al.: Convex temporal regularizers in cardiac C-arm CT, CT Meeting 2016

Temporal Regularization vs. Undersampling

Vessel Extraction [1]

- Thorax is truncated, arteries are not
- Truncation can cause artifacts in tomographic reconstruction
- Perform singleframe background subtraction [1]

[1] Unberath et al.: Virtual Single-frame Subtraction Imaging, CT Meeting 2016

Electrocardiogram Gating

- Vessel images grouped into subsets (gates) based on ECG
- Trade-off:
 - Wider windows \rightarrow More data per gate, higher inconsistency
 - Narrower windows \rightarrow Less inconsistency, strongly undersampled

Electrocardiogram Gating

• Our approach:

- Minimize residual motion (select only best fit from each cycle)
- Choose the total number of gates such that all data is used
- Compensate for undersampling by temporal regularization

Tomographic 4-D Reconstruction

$$\arg\min_{\boldsymbol{i}} r(\boldsymbol{i}) + \lambda_{s} \cdot \|\boldsymbol{i}\|_{sTV} + \lambda_{t} \cdot \|\boldsymbol{i}\|_{tTV} + \iota_{\mathbb{R}_{+}}(\boldsymbol{i})$$

Global convex objective function comprised of...

- Data fidelity
- Sparsity in spatial gradient domain
- Sparsity in temporal gradient domain

Objective Function – Data Fidelity

$$\arg\min_{\boldsymbol{i}} r(\boldsymbol{i}) + \lambda_{s} \cdot \|\boldsymbol{i}\|_{sTV} + \lambda_{t} \cdot \|\boldsymbol{i}\|_{tTV} + \iota_{\mathbb{R}_{+}}(\boldsymbol{i})$$

- $r(i) = \frac{1}{2} \|Ai p\|_2^2$ Squared residual norm
- $oldsymbol{i} \in \mathbb{R}^{N_{ ext{ph}} \cdot N_{ ext{vox}}}$ $oldsymbol{p} \in \mathbb{R}^{N_{ extsf{proj}} \cdot N_{ extsf{pix}}}$ $\mathbf{A} \in \mathbb{R}^{(N_{\text{proj}} \cdot N_{\text{pix}}) \times (N_{\text{ph}} \cdot N_{\text{vox}})}$ X-ray projection operator

Voxels to reconstruct (vectorized 4-D image) Measured line integrals after gating

 $\iota_{\mathbb{R}_+}$

Characteristic function for non-negativity

Objective Function – TV Regularization

$$\arg\min_{\boldsymbol{i}} r(\boldsymbol{i}) + \lambda_{s} \cdot \|\boldsymbol{i}\|_{sTV} + \lambda_{t} \cdot \|\boldsymbol{i}\|_{tTV} + \iota_{\mathbb{R}_{+}}(\boldsymbol{i})$$

$$egin{aligned} \|oldsymbol{i}\|_{ ext{sTV}} &= \|oldsymbol{D}_{ ext{s}}oldsymbol{i}\|_{1,2} \ \|oldsymbol{i}\|_{ ext{tTV}} &= \|oldsymbol{D}_{ ext{t}}oldsymbol{i}\|_{1} \end{aligned}$$

Spatial TV norm (sum of spatial gradient magnitudes) Temporal TV norm (sum of temporal gradients)

 $egin{aligned} m{D}_{
m s} \ m{D}_{
m t} \ m{\lambda}_{
m s}, \, \lambda_{
m t} \end{aligned}$

Spatial forward-difference operator (zero boundary) Temporal forward-difference operator (periodic) Regularizer weights

Optimization – Proximal Algorithm by Condat [1]

$$\begin{split} & \boldsymbol{i}_{\text{prev}} \leftarrow \boldsymbol{i} \\ & \boldsymbol{i} \leftarrow \left(\boldsymbol{i} - \tau (\nabla r(\boldsymbol{i}) + \boldsymbol{D}_{\text{s}}^{\top} \boldsymbol{g}_{\text{s}} + \boldsymbol{D}_{\text{t}}^{\top} \boldsymbol{g}_{\text{t}}) \right)_{+} \\ & \boldsymbol{g}_{\text{s}} \leftarrow \text{prox}_{(\lambda_{\text{s}} \| \cdot \|_{1,2})^{*}} (\boldsymbol{g}_{\text{s}} + \sigma \boldsymbol{D}_{\text{s}}(2\boldsymbol{i} - \boldsymbol{i}_{\text{prev}})) \\ & \boldsymbol{g}_{\text{t}} \leftarrow \text{prox}_{(\lambda_{\text{t}} \| \cdot \|_{1})^{*}} (\boldsymbol{g}_{\text{t}} + \sigma \boldsymbol{D}_{\text{t}}(2\boldsymbol{i} - \boldsymbol{i}_{\text{prev}})) \end{split}$$

Updates given by full primal-dual splitting

- TV proximal operator (no closed-form solution) replaced by linear transforms and L¹ / L^{1,2} proximal operators (analytic solution)
- Therefore: "simple" operations only, no nested loops

[1] Condat: A Generic Proximal Algorithm for Convex Optimization – Application to Total Variation Minimization, *IEEE Signal Processing Letters*, 2014

Experiments

- CAVAREV [1]
 - Overview
 - Platform for evaluating cardiac vasculature reconstruction
 - Dynamic numerical phantom derived from patient data
 - Projections simulated using acquisition geometry of a real C-arm
 - Specifics
 - 7 heart cycles, 133 projection images
 - Variant without respiratory motion (breathhold assumption)
 - 19 (= 133/7) gates, 256³ voxels of isotropic size 0.5 mm

[1] Rohkohl et al.: **CAVAREV – An Open Platform for Evaluating 3D and 4D Cardiac Vasculature Reconstruction**, Phys Med Biol 2010

Experiments

- Exemplary clinical patient data set
 - Device: Artis one (Siemens Healthcare GmbH, Forchheim, Germany)
 - 5 heart cycles, 133 projections (4s rotation)
 - 27 (\approx 133/5) gates, 256³ voxels of isotropic size 0.5 mm
 - Qualitative evaluation (visual inspection)

Results: CAVAREV

Method	Dice
Standard FDK	0.431
ECG-Gated FDK	0.595
Dynamic Level Sets [Keil 2009]	0.692
PICCS [Wu 2011, Chen 2012]	0.726
L1 minimization [Wu 2011, Li 2004]	0.730
Streak-Red. Gated FDK [Rohkohl 2008]	0.744
Resid. Motion Comp. [Schwemmer 2013a]	0.776
Spatial Total Variation [Wu 2011]	0.785
Motion Compensation [Schwemmer 2013b]	0.823
Spatio-temporal TV (proposed)	0.876

Results: CAVAREV

Results: CAVAREV

Results: Clinical Data

Summary and Outlook

- Key idea:
 - Minimize residual motion within each gate
 - Exploit all data by spatio-temporal regularization

Potential extensions:

- Temporal regularization for background subtraction
 - Reduce inconsistency due to segmentation errors
- Respiratory motion compensation
 - E.g. based on Fourier-domain or epipolar consistency conditions
 - Applicable since extracted vessel images are not truncated

Thanks for your attention!

Questions?

