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I. INTRODUCTION

D IGITAL subtraction angiography (DSA) is a well-
established imaging technique for background removal

[1] in interventional X-ray-based angiography. For DSA, pro-
jections of the scene without contrast agent (mask scan) are
digitally subtracted from projections acquired during contrast
injection (fill scan), yielding images of the contrasted lumen
only. Unfortunately, DSA can only be applied successfully to
invariant anatomies as motion between the acquisition of mask
and fill scan introduces misalignment artifacts that deteriorate
diagnostic value. For cardiac imaging, this requirement is
particularly problematic as the coronary arteries are subject
to constant cardiac and respiratory motion [2].
Popular methods seek to avoid the problems induced by inter
scan motion as a whole by estimating mask images from fill
scans [2], [3], a technique that we will refer to as virtual
DSA (vDSA). These methods require vessel segmentation
to identify regions for image inpainting, i. e. background
estimation. While the methods employed for vessel segmen-
tation differ, the variation in inpainting algorithms is rather
limited. Blondel et al. and Unberath et al. use morphological
closure and spectral deconvolution, respectively, to estimate
the background image [2], [3]. These methods work well for
small regions of interest (ROIs) but usually perform poorly
when large areas need to be estimated.
Recently, methods from machine learning based on denoising
autoencoderes and convolutional neural networks (CNNs) have
received increasing attention, and were applied successfully
to image inpainting [4], [5]. State-of-the-art results on natural
images are impressive, however, the applicability to medical
images, particularly to vDSA has yet to be demonstrated.
In this paper, we adapt the U-net CNN architecture [6] to allow
for regression, and apply it to image inpainting for background
estimation in vDSA imaging.

II. MATERIALS AND METHODS

Vessel Segmentation: An image showing contrasted vessels
I is processed by Hessian-based segmentation algorithms [2]
yielding a binary mask M that is unity for pixels identified
as contrast agent and zero else. Pixel-wise multiplication of I
and the inverse mask M results in a defect image that serves
as input to the U-net described below. A dilated version of the
segmentation mask is denoted by M d.

U-net regression: Previous approaches [4], [5] avoid down-
sampling because of the desired high resolution outcome.
However, downsampling via pooling is beneficial as it yields
more generic features. To combine downsampling and a high
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Fig. 1. U-net architecture employed here.

resolution output via skip-ahead connections, we employ the
U-net [6]. Fig. 1 states all relevant parameters such as the num-
ber of features and their respective sizes. The U-net consists
of a contracting path, where downsampling layers decrease the
feature sizes with increasing depth of the network. Therefore,
each level consists of two convolution layers followed by a
max pooling downsampling layer. Within one max pooling
operation, the size of the features is decreased by a factor
of two. In return, the next convolution layer doubles the
number of features. Therefore, the features lose spatial but gain
contextual information. Moreover, the U-net has an expanding
path that uses upsampling layers to propagate contextual
information to higher resolution levels. An upward step halves
the number of features while doubling their dimensions. The
output of this layer is then combined with features from the
downsampling layer via skip-ahead connections (blue arrows
in Fig. 1). The structure of the horizontal level is similar
to the downwards path, again with two convolution layers.
The output X (θ) of the network depends on its parameters θ
is compared to the ground truth of the input using a mean-
squared-error loss.
We distinguish two stages: (i) Inpainting occurs only in a very
small region defined by the segmentation mask; this approach
will be referred to as mask-guided. For a batch of N images,
the batch loss Lb reads
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where |M | denotes the number of non-zero pixels in M , Ω
is the image domain, and Y is the no-contrast ground truth
image. (ii) The network trained in (i) is refined to restore the
complete image rather than segmented pixels only. The batch
loss stated above is modified by omitting the weighting with
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Fig. 2. Representative results of the inpaiting algorithms. From left to right, the columns show the input image, the defect image, and inpainting results
achieved with spectral deconvolution as in [2], and the mask-guided and semi-blind U-net proposed here. We show a high noise realization for the phantom.

the mask M d(p). This approach is similar to blind inpainting
as in [5], but still requires segmentations to create the defect
image; thus, we call it semi-blind. The loss is optimized via
stochastic gradient descent and back-propagation.

Data and Experiments: For training, we use the well-
known numerical XCAT phantom [7] to simulate projection
images at different viewing angles and noise realizations
with and without contrasted arteries. The images and corre-
sponding segmentation masks are separated in training, test,
and validation sets, that are then partitioned into overlapping
tiles of 400 × 400 pixels. Moreover, we use common data
augmentation strategies, i. e. rotations, before partitioning, to
artificially increase the training set size. We train U-nets for
the mask-guided and semi-blind inpainting task and state the
structural similarity (SSIM) [8] of our predictions with the
ground truth within M d, averaged over the test set. Moreover,
we apply the networks trained on numerical phantom data to
a clinical angiography data set. All results are compared to
spectral deconvolution [2].

III. RESULTS AND DISCUSSION

Quantitative results on the phantom data are presented
in Table I. Moreover, we show representative inpainting re-
sults on phantom and clinical data in Fig. 2. Objectively,
performance of the semi-blind U-net is superior to mask-
guided network and spectral deconvolution in the low noise
case, and comparable to spectral deconvolution in the low
noise realizations. Despite only being trained on phantom
data, the performance on clinical data is promising. Due to
the low complexity of U-net-based inpainting compared to
the spectral method, we believe that these results encourage
further research that should address possibilities to completely
omit the need for segmentation masks and, hence, enable true
blind inpaiting.

TABLE I
THE AVERAGE SSIM OVER ALL PROJECTIONS.

Spectral Mask-guided Semi-blind
High noise 0.74 0.69 0.78
Low noise 0.97 0.95 0.96

IV. CONCLUSION

We presented an image inpainting method for coronary
arteries in X-ray projections using CNNs. The performance
of the proposed methods was comparable to competing ap-
proaches both on phantom and clinical data and encourages
further research targeted at enabling true blind inpainting.
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