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ABSTRACT

Non-recurrent intra-scan motion, such as respiration, corrupts
rotational coronary angiography acquisitions and inhibits un-
compensated 3D reconstruction. Therefore, state-of-the-art
algorithms that rely on 3D/2D registration of initial recon-
structions to the projection data are unfavorable as prior mod-
els of sufficient quality cannot be obtained. To overcome this
limitation, we propose a compensation method that optimizes
a task-based autofocus measure using graphical model-based
optimization.
The proposed algorithm is validated on two numerical phan-
tom data sets and a clinical scan. In the phantom studies, we
found a reduction of the root-mean-square error between the
true and estimated motion pattern of 82 ± 2 % when the pro-
posed method was used, yielding residual errors well below
the voxel size. For the clinical data set, we observed a sub-
stantially increased amount of voxels with low reprojection
errors indicating superior image quality.
Our results are promising and suggest that the proposed
method effectively handles non-recurrent motion while over-
coming the need for prior reconstructions.

Index Terms— Cone-beam CT, Markov random fields,
Angiography, Cardiac imaging, Discrete optimization

1. INTRODUCTION

C-arm cone-beam CT angiography is the gold standard imag-
ing protocol for diagnostic assessment of cardiovascular dis-
ease [1, 2]. Due to the complex structure of the coronary
artery tree, multiple projections from selected viewing direc-
tions must be acquired to mitigate the effects of projective
simplification, such as overlap and foreshortening [3, 4].
The aforementioned problems can be addressed by providing
physicians with the 3D anatomy that is reconstructed from
rotational angiography [2, 4].
Unfortunately, straight forward reconstruction in a filtered-
backprojection sense [5] is impossible. Projection data is
acquired over multiple seconds and, thus, corrupted by car-
diac and respiratory motion. While phase binning strategies,
such as ECG-gating, are effective for cardiac motion [3, 4],

they cannot be applied for respiratory motion management.
The reason is that respiration is low frequency and, therefore,
virtually non-periodic in this context. This is particularly
problematic as most currently known methods require a 3D
model of the artery centerlines to enable 3D/2D registration.
The 3D model is either obtained from a prior scan [6] or
from an initial, uncompensated reconstruction [3, 7, 8]. In the
general case, however, prior scans are not available and cor-
ruption by respiratory motion is substantial, such that initial
reconstruction is impossible.
Addressing respiratory motion compensation without assum-
ing that the uncompensated data allows for meaningful recon-
struction is much harder and reveals a trade-off between re-
quired preconditions and complexity of the estimated motion
model. Methods that operate in projection domain directly
are known [9] but are currently limited to detector domain
shifts parallel to the rotation axis. In this paper we show that
graphical model-based optimization of a task-specific autofo-
cus measure allows for the estimation of 3D translations that
compensate non-periodic intra-scan respiratory motion. The
proposed approach is validated using a numeric 3D vessel
centerline phantom adapted from [10] that is augmented to
4D using motion patterns based on [11]. Finally, we demon-
strate the applicability of the method to clinical data.

2. MATERIAL AND METHODS

We describe an algorithm for respiratory motion compensa-
tion in rotational angiography. To this end, we optimize a
task-based autofocus measure using α-expansion moves and
graph-cuts. To allow for sparse sampling of the projection
sequence, we parametrize the motion model using B-splines
rather than a sequence of translation vectors.

2.1. Autofocus measure

Recently, motion compensation algorithms based on image
sharpness, i.e. autofocus, measures have received increasing
attention [12]. Unfortunately, standard measures are not ap-
plicable in the context described here because tomographic
reconstruction is infeasible. Reconstruction is restricted to



scenes that are consistent except for the motion that is com-
pensated for. As we opt for respiratory motion compensation,
only the four to six images depicting a similar cardiac phase
can be considered simultaneously making standard recon-
struction impossible. Sparsifying image processing in pro-
jection domain, such as vessel centerline extraction, together
with modified backprojection operators enable the reconstruc-
tion of volumetric potential maps, rather than tomographic
images, that serve as cost maps for 3D centerline extraction
[13, 14]. Properties of aforementioned potential maps di-
rectly relate to the quality of centerline reconstructions and
can, therefore, be subject to autofocus measurements.
Assuming that 2D centerlines T (i) in all views i = 1, . . . , N
corresponding to heart phase cr are available, we can compute
their distance transform as

Γ(i)(u) = Γ(u|T (i)) = d
(
u, c(u|T (i))

)
, (1)

where d(u,v) = ‖u−v‖2 is the Euclidean distance between
image points u,v ∈ R2 and c(u|T ) = arg minv∈T d(u,v)
is the closest point to u in T . From the distance transforms,
the 3D potential map Sr(x) is given by

Sr(x) = max
i

Γ(i)(x̆(i)), (2)

where x̆(i) ∈ R2 is the projection of x ∈ R3 onto image plane
i. Points exhibiting a very low response Sr are most likely to
belong to the 3D centerline, however, they are very sparse as
Eq. 2 allows low responses only at positions that consistently
project close to the 2D centerlines. For symbolic reconstruc-
tion in the sense of 3D minimal-cost-path extraction [13] we
favor sharp responses with pronounced local minima and de-
sign our auto-focus measure accordingly. It is given by

a(Sr) =

(
B∑
i=1

gi
Ci(Sr)

Vi(Sr)

)−1

, (3)

where {Vi, Ci} constitutes the histogram of B bin center val-
ues Vi and the respective voxel counts Ci, and gi is a bin
dependent gain that is tuned to emphasize the importance of
low-cost bin counts. a(Sr) tends to 0 with increasing num-
bers of low cost voxels in Sr.

2.2. Motion model, target function, and optimization

It is well known that respiratory motion of the heart can be
approximated by a 3D translation [11]. Direct estimation
of 3D shifts for every projection requires a cost function
that accounts for every image. This, however, is not practi-
cal because subsequent images correspond to different heart
phases that require separate potential maps which drastically
increases the computational demand (see Fig. 1). Conse-
quently, we express the 3D shifts ti∈R3 as a B-spline curve

ti(Φ) =

K∑
k=1

ϕk ·Bk,d(i/N), (4)

Fig. 1. Images of distinct cardiac phases cr are scattered over
the scan range. Backprojection following Eq. 2 at a specific
cardiac phase cr yields the corresponding potential map Sr.

where Bk,d are the B-spline basis functions of degree d and
Φ = {ϕk ∈ R3 | k = 1, . . . ,K} is the set of control points,
the position of which will be optimized. This approach is ad-
vantageous in two ways. First, it yields inherently smooth
displacement sequences for all images. Second, a subset of
the images, which is defined by the target heart phases se-
lected, suffices for obtaining a global motion trajectory.
Given the motion model we can formulate the target energy
function that we seek to minimize. It reads

E(Φ) =

K∑
k=1

D(ϕk|Φ) + λ
∑

(k,l)∈N

V (ϕk, ϕl), (5)

where D(ϕk|Φ) enforces data fidelity while V (ϕk, ϕl) pro-
motes smoothness in neighborhoods N . The data term reads

D(ϕk|Φ) =
1

R

R∑
r=1

a
(
Sr ◦ T(ϕk|Φ)

)
, (6)

where (ϕk|Φ) denotes Φ with all elements held constant ex-
cept for ϕk, Sr ◦ TΦ is the motion compensated 3D potential
map, TΦ(x, i) = x + ti(Φ), and R is the number of consid-
ered heart phases. Moreover, V (ϕk, ϕl) = ‖ϕk − ϕl‖2 is the
Euclidean distance between neighboring control points.
Gradient- and grid search-based optimization of Eq. 5 is, in
general, impractical due to the complex shape and high-
dimensional domain of the target function, respectively.
However, when exchanging continuous control point loca-
tions ϕk with discrete candidates ϕ(fk)

k , Eq. 5 takes a form
that can be optimized using the α-expansion algorithm [15].



Rather than directly obtaining optimal control point posi-
tions that minimize the energy, we recover optimal labels
f = (f1, . . . , fK)> ∈ NK that yield shifts t(Φf ), where
Φf = {ϕ(fk)

k , k = 1, . . . ,K} is the set of control points
defined by the current labeling. Put concisely, for all can-
didate labels α ∈ {1, . . . , F} we seek to find f̂ such that
Φf̂ = arg minE(Φf ′), where f̂ is within one α-expansion of
the current labeling f . As for particular control points ϕ(fk)

k

the label fk either changes to α or stays the same, each move
is essentially a partitioning problem that is solved using a
graph cut. A comprehensive description of the algorithm can
be found in [15].

2.3. Experiments

The proposed algorithm is evaluated using two phantom stud-
ies and a clinical data set.
For the phantom studies we extract centerlines from an
XCAT-based coronary artery phantom [10] and project it
using a standard 133 view rotational angiography trajectory
and respiratory motion patterns tgt derived from [11]. The
two simulated acquisitions Ph1 and Ph2 comprise a com-
plete and a partial breathing cycle, respectively. Finally, we
compare true and estimated motion patterns using the root-
mean-square error (RMSE).
For the real data set ground-truth motion is not available and
the evaluation is limited to qualitative inspection of the poten-
tial maps with and without the proposed motion compensation
strategy. Projection domain coronary artery centerlines that
are required by the algorithm were extracted using a method
similar to [9].
Optimization is applied on multiple scales by increasing the
number of both control points and heart phases after con-
vergence, such that (K,R) ∈ {(2, 3), (5, 3), (7, 10)}. At the
lowest scale, the control points are initialized to yield zero
shift. The discrete samples then cover a 4×4×7 mm3 neigh-
borhood around the starting positions. The potential map has
2563 voxels with an isotropic size of 0.5 mm.
The bin-dependent gain gi is selected to heavily favor high
counts in low cost histogram bins. It reads

gi =


10 if Vi < 1 mm,
1 if 1 mm ≤ Vi < 5 mm,
0 else.

(7)

3. RESULTS AND DISCUSSION

The estimated and true shifts of the two phantom data sets
are shown in Fig. 2. For Ph1, containing a complete respi-
ratory cycle, the RMSE error decreased from 1.5 ± 0.5 mm
without compensation to 0.29± 0.11 mm using the proposed
method. We observed very similar improvement for Ph2
comprising the partial cycle, where the RMSE decreased from
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Fig. 2. Estimated and ground-truth motion patterns of Ph1
and Ph2 are shown in Fig. 2a and 2b, respectively. Fig. 2c
shows the motion pattern estimated for the clinical data set.

0.85±0.49 mm in the uncompensated case to 0.13±0.07 mm.
From Fig. 2 it becomes obvious that compensation works best
for the tz component. This is not surprising as tz accounts
for craniocaudal shifts parallel to the rotation axis that are
observed over the whole angulation. Estimating motion that
occurs in the plane orthogonal to the rotation axis proved
more difficult, however, shifts larger than the voxel size of
0.5 mm were recovered satisfactorily. It is worth mentioning
that the residual error in both phantom studies is well below
the voxel size of the 3D potential maps.
For the clinical data set, the proposed algorithm yielded the
motion pattern shown in Fig. 2c. A volume rendering of the
corresponding motion-compensated potential map is shown
in Fig. 3b next to the rendering of the respective uncompen-
sated reconstruction. The effect of autofocus-driven motion
compensation manifests in substantially more pronounced
paths with very low cost that are partly highlighted by green
arrows. As potential maps serve as basis for 3D artery center-



(a) (b)

Fig. 3. Fig. 3a and 3b illustrate volume renderings of an un-
compensated and a motion-compensated potential map Sr de-
picting the same cardiac phase, respectively. The window-
level is fixed to [0, 1] mm for both renderings.

line extraction [13], the aforementioned improvement directly
translates to improved symbolic reconstruction quality.

4. CONCLUSIONS

We proposed 3D translational motion compensation in rota-
tional angiography using graphical model-based optimization
of a task-based autofocus measure. The method does not rely
on initial reconstructions and, therefore, effectively handles
large, non-recurrent motion patterns. We evaluated our ap-
proach on two numerical phantom data sets and a clinical ac-
quisition and obtained promising results. Future work will
investigate possibilities to improve on motion estimation in
the plane orthogonal to the rotation axis.
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