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Abstract. 2-D/3-D image fusion is used for a variety of interventional
procedures. Overlays of 2-D images with perspective-correctly rendered
3-D images provide the physicians additional information during the in-
terventions. In this work, a real-time capable 2-D/3-D registration frame-
work is presented. An adapted parallelization using GPU is investigated
for the depth-aware registration algorithm. The GPU hardware architec-
ture is specially taken into account by optimizing memory access pat-
terns and exploiting CUDA-texture memory. The real-time capability is
achieved with a median runtime of one 2-D/3-D registration iteration of
86.1 ms with an median accuracy of up to 1.15 mm.

1 Introduction

Imaging gained more and more importance in interventional medicine over the
last decades. In the family of diverse medical imaging modalities, X-ray fluo-
roscopy is the standard routine for many interventional procedures. The fluoro-
scopic images are acquired intra-operatively by the interventional C-arm system.
Intra-operative images are often combined with pre-operative images acquired
by Computed Tomography (CT) or Magnetic Resonance Tomography (MRT) to
give the physicians information about the 3-D position of interventional devices
to provide guidance. The interventional fluoroscopies are combined with 3-D im-
ages by rendering a perspective-correct view of the 3-D image and superimpose
it onto the 2-D fluoroscopy. This procedure is called 2-D/3-D image fusion. For
an accurate overlay of fluoroscopy and CT image, the application has to compen-
sate for misalignments often introduced by patient movement. To maintain the
accuracy of the overlay, 2-D/3-D registration algorithms are applied. Further-
more, any interventional application has to meet time constraints. These circum-
stances make it necessary for the implementations to be performance-oriented
and adjusted to the processing architecture. In the recent years, the use of spe-
cial hardware like Graphic Processing Units (GPUs) has been investigated for
computationally intensive tasks in high performance computing. For example,
rendering of Digitally Reconstructed Radiographs (DRRs) is an often used ap-
proach in 2-D/3-D registration, which is well parallelizable and computational
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intensive. GPUs became very common for implementations of 2-D/3-D registra-
tion algorithms [1].

In this paper a real-time registration implementation of an algorithm [2]
based on the point-to-plane correspondence (PPC) model [3] for rigid registra-
tion is presented. The proposed approach makes use of the high performance of
GPUs for applications with a potential for high parallelism and exploits special
hardware optimizations for GPUs. This paper is structured as follows. In Sec. 2,
an overview of the registration algorithm is given and the parallelization method
for the overall algorithm and for computationally intensive sub-steps is described.
Runtime performance is evaluated and results are presented in Sec. 3. In Sec. 4,
results are summarized and future development possibilities are outlined.

2 Materials and methods

2.1 Depth-aware registration algorithm

To correct the misalignments and preserve the accuracy of the 2-D/3-D overlay, a
transformation TReg ∈ R4×4 has to be estimated to compensate for the motion.
TReg is determined by depth-aware registration based on the feature-based PPC
model [3]. With this model, a linear system of equations is formulated using a
set of feature points {w}corr for the observed volume and a set of corresponding
2-D points {p′}corr on the fluoroscopic image I0 [3]. For the proposed approach,
an initial set of feature points with an high 3-D image gradient, e.g. on bone
surfaces {w}init is extracted from the volume using the 3-D Canny filter [4].
In the preselection step, occluding contour points {w}sel are selected from the
current viewing direction [3]. In the tracking step, correspondences for {w}sel are
searched with Depth-layer-gradient Images (DLIs) [5] of the volume and gradient
images of the fluoroscopy using a patch-matching approach. This patch-matching
routine [2] determines the set of feature points and correspondences {w,p′}corr
for the estimation of TReg. The transformation TReg is computed by solving the
system of equations using iterative-reweighted least square optimization.

2.2 GPU-parallelization of the registration algorithm

The above algorithm offers the ease of parallelization to reduce the overall run-
time of the approach. To harness the high parallel processing potential of GPUs,
the algorithm is implemented in Nvidia CUDA for Nvidia GPUs. All sub-steps
are implemented with the parallelization adapted to the sub-steps properties.
The rendering of DLIs is similar to the DRR generation, which is well paral-
lelizable for GPUs [1]. For the DLI-rendering, the volume is initially stored in a
3-D CUDA-texture. The advantage of using CUDA-textures for sampling is the
efficient hardware-implemented interpolation and 3-D spatial caching. The pre-
selection as well as the patch-matching routine are executable for every feature
point independently. Therefore, the GPU-implementation yields great potential
for a runtime improvement. The well parallelizable steps, i.e. preselection and
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patch-matching, are performed on the GPU for all initial feature points in par-
allel. Furthermore, all feature points are processed in the GPU memory to avoid
CPU-GPU memory transfer latencies. The final estimation of TReg is performed
on the CPU and is the sole step executed on the CPU. Therefore, only fea-
ture points with correspondences as well as the correspondences themselves are
transferred from the VRAM to the processors main-memory. An overview of the
implemented GPU registration framework is given in Fig. 1.

2.3 Patch-matching parallelization

To improve the performance of the patch-matching step, two approaches are
investigated. The routine uses Gradient Correlation [6] on multiple patches in
the vicinity of each feature point to find corresponding points between DLIs
and the gradient image of the fluoroscopy. A feature-based and a patch-based
parallelization is examined to achieve real-time performance. The feature-based
method distributes all patch-matching computations necessary for one single
feature point to one single CUDA-thread each. This approach increases the
simultaneously executed computations significantly compared to a multi-core
CPU implementation with at least 32 threads processing in parallel. In the
patch-based routine, each patch processed for a feature point position is as-
signed to one CUDA-thread. Patches processed for one feature point overlap
strongly and therefore GPU memory is accessed in close spatial vicinity. To ben-
efit from caching and to coalesce memory accesses, all patches for one feature
points are processed in parallel by concurrently working threads on the GPU.
To further improve data access read-only data caching is used for DLI-images
and fluoroscopy gradient images, which enables L1-caching of all accessed data.

DLI generation

3D Canny

(CPU)

Fig. 1. Overview of the GPU-based registration Framework. All data and steps within
the dashed lines reside respectively are executed on the denoted hardware architecture.
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2.4 Depth-layer-image sampling

DLIs are used to find correspondences for feature points in a patch-matching
routine. The DLI-rendering is implemented in a CUDA kernel using a ray-based
parallelization. The memory access patterns of the kernel is adapted to the spa-
tial caching of CUDA-textures. To further improve the runtime-performance of
the kernel, the sampling step ks is varied. By increasing ks, the necessary num-
ber of volume-texture evaluations decreases, but it can worsen the accuracy due
to lack of evaluated sampling points. The optimal sampling step is determined,
which does not deteriorate the mean Target Registration Error (mTRE) [7] of
the overall approach and yields the best runtime result for DLI-rendering.

3 Results

The evaluation of the runtime performance is done on a high performance test-
system using a modern Nvidia GPU for professional rendering (Intel Xeon E4-
1620v3@3.5GHz, 8GB DDR4-RAM, NVIDIA Quadro K2200 (640 CUDA-Cores,
1 GHz, 5 SMs). The evaluation setup from [3] with ten image sequences of a tho-
rax phantom is used for the runtime evaluation. All runtime measurements are
averaged over ten runs. The accuracy of the approach is indicated by the mTRE
and the mean Projection Error (mPE) [3]. In the first evaluation, the different
patch-matching methods are evaluated for the best runtime. The best volume
sampling step for rendering DLIs is determined by an accuracy and runtime
evaluation. The overall runtime-performance is evaluated using the determined
sampling step and patch-matching approach.

The volume sampling step ks is initially chosen as 1.0 voxel per sampling
step. The evaluation is done by increasing ks by 0.2 per evaluation step. The
runtime and the mTRE for the chosen ks are measured. With ks = 2.0 voxels,
the best runtime is achieved without increasing the overall mTRE, see Fig. 2 and
Fig. 3. The evaluation results are averaged over all image sequences (#1-#10).
The run-time performance of the DLI-rendering step is increased by 224%.
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Fig. 2. Error evaluation for different ks
[sampling step length].

0

5

10

15

20

25

30

35

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

re
n
d
e
ri
n
g
 t
im

e
 [
m

s
]

sampling step length [voxels]

Fig. 3. Runtime evaluation for different ks
[sampling step length].
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Table 1. Average and best runtimes of the patch-matching implementations.

Implementation Average [ms] Best [ms] Speed-Up (Average)

GPU (feature-based): 92.11 84.82 -

GPU (patch-based): 40.31 34.53 ×2.28

The evaluation for the patch-matching methods is performed with image
sequence #10. The patch-based approach outperforms the feature-based imple-
mentation by around 228%, see Tab. 1.

For the evaluation of the overall framework, the patch-based implementation
and a sampling step of ks = 2.0 voxels per sampling step is used. An average
runtime of 86, 1 ms and a best runtime of 73, 1 ms is reached in the evaluation
setup, which is considered real-time capable for dynamic 2-D/3-D registration
[8]. In comparison with a single-core CPU implementation using an OpenGL
DLI-rendering a speed-up of ×41.2 is achieved, see Tab. 3. The mTRE depending
on the image sequence is 0.86 mm at best and 1.21 mm in average and does not
exceed 2.0 mm for 8 out of 10 sequences, see Tab. 2. The mPE does not exceed
2.0 mm for all sequences and is 1.15 mm in average and 0.80 mm at best, see
Tab. 2.

4 Discussion

In this paper, a GPU-based real-time 2-D/3-D registration framework is pre-
sented. A depth-aware registration approach using the PPC model is imple-
mented for Nvidia GPUs. The framework makes use of the high parallelism of
GPUs and is optimized for Nvidia GPU architecture exploiting CUDA-texture
memory and read-only data-cached memory access. The implementation is ad-
justed for the special architectural demands of GPUs by coalescing GPU mem-
ory accesses and taking spatial caching-strategies of CUDA-texture memory into

Sequence #frames mTRE [mm] mRPE [mm]

1 33 4.39± 0.35 1.18± 0.12

2 93 1.23± 0.40 1.03± 0.22

3 111 1.16± 0.20 1.13± 0.21

4 111 1.08± 0.28 1.06± 0.19

5 110 1.53± 0.24 1.17± 0.28

6 101 0.83± 0.23 0.80± 0.12

7 105 3.48± 2.92 1.27± 0.47

8 117 1.77± 0.68 1.29± 0.14

9 114 0.86± 0.24 0.80± 0.16

10 121 1.19± 0.25 1.49± 0.23

Table 2. mTRE and mRPE and standard deviation of the implemented approach.
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Table 3. Average and best runtimes of one registration iteration for the different
implementations.

Implementation Average [ms] Best [ms] Speed-Up (Average)

CPU (single-core|ks = 1.0) 3553.27 2633.44 -

GPU (feature-based|ks = 1.0) 174,36 171,93 ×20, 38

GPU (patch-based|ks = 2.0) 86.11 73.47 ×41, 2

account. Real-time capability [8] and a runtime performance of 13 frames per
second at best is achieved with the GPU-framework and an adapted volume
sampling step. Only one approach for 2-D/3-D registration reaches a similar
framerate and a higher runtime-performance is not reached by approaches re-
ported in literature [9] to the best knowledge of the author.

For further development, the GPU framework is to be completed by im-
plementing the final motion estimation step on the GPU. With the achieved
real-time capability multi-start approaches similar to [10] are feasible to be in-
vestigated.
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