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Abstract. Confocal laser endomicroscopy is a novel imaging technique
which provides real-time in vivo examination and histological analysis of
tissue during an ongoing endoscopy. We present an automatic classifica-
tion system that is able to differentiate between healthy and cancerous
tissue of the vocal cords. Textural as well as CNN features are encoded
using Fisher vectors and Vector of Locally Aggregated Descriptors while
the classification is performed using random forests and support vec-
tor machines. Two experiments are investigated following a leave-one-
sequence-out cross-validation and a fixed training and test set approach.
Classification rates reach up to 87.6 % and 81.5 %, respectively.

1 Introduction

Head and neck cancer is a collective term that comprises cancers of the upper
aerodigestive tract including laryngeal cancer. Over 90% of laryngeal cancers
are squamous cell carcinomas whereof half involve the vocal cords. To date, the
standard of care for the diagnosis of laryngeal cancer is white light examination
followed by biopsies and histopathology of suspicious lesions to confirm malig-
nancy. These treatments are time consuming and resections may lead to perma-
nent voice disorders. Moreover the accuracy of the diagnosis is highly dependent
on the experience of the surgeon, the pathologist and the quality of biopsy.
Recently a novel optical imaging method called confocal laser endomicroscopy
(CLE) has been proposed, allowing subsurface analysis of the epithelium in real
time and thus enables optical histology during ongoing endoscopy. In order to ac-
quire high-contrast visualization of the surface epithelium, contrast agents such
as fluorescein is administered intravenously to stain the cellular architecture and
extracellular matrix. Thus, gained images allow the comparison between healthy
epithelium and malignant lesions.
CLE has been successfully applied in gastroenterology and was recently intro-
duced in the context of head and neck cancer. To assist the decisions of the
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surgeon during an ongoing endoscopy, several approaches for the automatic de-
tection and classification of healthy and cancerous tissue exist. For example
Dittberner et al. [1] propose an automated image analysis algorithm for the
classification of head and neck cancer using distance map histograms. Another
approach, introduced by Jaremenko et al. [2], uses various textural features for
the automatic classification of CLE images of the oral cavity.
This paper presents a bag of words (BoW) approach, based on the framework
of [2], to differentiate between images of healthy and cancerous tissue using
Vector of Locally Aggregated Descriptors (VLAD) and Fisher vectors (FV). Ad-
ditional textural features are evaluated and since features extracted from convo-
lutional neural networks (CNN) arise to be a strong competitor to the state-of-
the-art methods in image classification [3] their performance is compared with
the textural features.

2 Materials and Methods

In this study, 45 video sequences from 5 patients were obtained using a probe-
based CLE (pCLE) system from Cellvizio (UHD GastroFlex, Mauna Kea Tech-
nologies, Paris, France). These sequences are separated into single images leading
to a database consisting of 1767 physiological images and 2675 images contain-
ing carcinoma. The images were labeled by an expert of the University Hospital
Erlangen, Germany. While images of healthy epithelium show flat and relatively
uniform scale-like cells with alternating bright and dark bands, images of carci-
noma show a completely disorganized cell structure with fluorescein leakage as
visualized in Fig. 1.

(a) Healthy (b) Cancerous

Fig. 1. Examples of pCLE images of healthy and cancerous squamous epithelium

2.1 Features

Following the pre-processing step proposed by Jaremenko et al. [2], features are
extracted from small rectangular patches with an edge length of 105 pixels and
50 % overlap. From each of the image patches, Histogram of Oriented Gradients
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(HoG) [4], Gray level co-occurrence matrices (GLCM) [5], Local binary patterns
(LBP) [6], Local derivative patterns (LDP) [7] and CNN features are extracted
as local descriptors. In [2] the average and standard deviation of each feature
over all patches is used to describe each image, whereas here the concatenation
of all patch descriptors depicts each image.

2.2 Convolutional neural network model design and training

For the extraction of the CNN features, a CNN architecture based on the LeNet-5
network [8] is used. LeNet-5 consists of a convolutional layer followed by a max-
pool layer, another convolutional layer followed by a max-pool layer and two
consecutive fully connected layers. Additionally a fully connected layer is added
and the sigmoid activations are replaced by Rectified Linear Unit (ReLU) ac-
tivations. The network is trained on a training set consisting of 154440 image
patches (2790 images) and 2 classes. The weights are updated by stochastic gra-
dient descent, accompanied by momentum term of 0.9 and the learning rate is
set to 0.0005 for all epochs.
Data augmentation is used to align the distribution of both classes of the original
training set and to increase its variance. For this purpose, the CLE images are ro-
tated arbitrarily and additional patches are extracted. Following this procedure,
the training set is increased to 374972 image patches (7211 images).

2.3 Bag of words framework

The BoW model requires the construction of a visual codebook based on k-means
clustering of features extracted from training images. The codebook consists of
a set of visual words (cluster centers) which is used to compute a histogram of
visual word frequencies to encode a given image.
FV and VLAD have shown to outperform the classical BoW model in the context
of image classification. In this study, both methods are used to encode the image
features proposed in chapter 2.1, followed by a classification step using support
vector machines (SVM) and random forests (RF).

Fisher vector encoding [9] uses a Gaussian mixture model (GMM) as a gen-
erative model, where the parameters of the K components can be denoted as
λ = {(ωk, µk, Σk), k = 1, 2...,K}, where ωk, µk and Σk are the mixture weight,
mean and covariance matrix of the k-th component learned from a training set,
respectively. Given a feature vector X = {x1, ..., xT } extracted from an image,
the gradients of the FV with respect to the weight parameters, mean and stan-
dard deviation can be computed with following equations:
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where γt(k) is the posterior probability. By concatenating GXαk
, GXµk

and GXσk

for all K components, the final FV of the image is obtained with size (2×D +
1)K, where D is the dimension of the local feature vectors x. Subsequently, `2-
normalization and power normalization of the form f(z) = sign(z)|z|α is applied
to improve the performance of Fisher vectors.

VLAD encoding [10] is a simplification of the FV encoding. A codebook {µ1, µ2, ..., µK}
is generated by using k-means. The VLAD descriptor for each µk can be com-
puted by accumulating the differences x−µk, where x is the image feature having
µk as its nearest cluster center µk = NN(x):

vk =
∑

xj :NN(x)=µk

xj − µk (4)

The final VLAD encoding vector is obtained by concatenating vk over all µk
and has the dimension D × K, where D is again the dimension of the local
image feature vectors x. As for FV, the VLAD descriptor is also normalized
subsequently. In this study, intra-normalization is performed, where the sum
over each cluster center µk is `2-normalized before applying the standard `2-
normalization of the entire VLAD descriptor.

3 Results

To estimate the generalization performance of the BoW approach using FV and
VLAD, a leave-one-sequence-out cross-validation (LOSO-CV) model is used, to
evaluate the classification performance.
As the LOSO-CV model would lead to exhausting computation times in case of
the CNN approach, the performance is evaluated and compared to the textural
features using a fixed train and test set following a 70:30 split ratio. To avoid
correlation effects, complete sequences are used as hold out test set consisting
of at least two sequences of each subject, one being physiological and one being
pathological. The number of visual words are empirically set to 5 for both FV
and VLAD as the performance did not improve using a larger vocabulary size
in preliminary experiments.
The accuracy (Acc) and average recall (Rec) for the two feature encoding meth-
ods FV and VLAD are illustrated in Tab.1. Overall, VLAD encoding outper-
formed FV and reaches the best result with an accuracy of 87.6% and average
recall of 86.7% using LBP and the SVM classifier.
The results of [2] using the same image database, are listed on the bottom of
Tab.1. As comparison the two best performing features of [2] were chosen. The
approach reaches an accuracy above 89.1% and average recalls above 90.3% us-
ing the SVM classifier and similar results also apply for the RF classifier.
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Table 1. Classification results using FV, VLAD*, the approach of [2]+ and LOSO-CV:
Accuracy (Acc) and average recall (Rec)

SVM RF

Features Property Acc Rec Acc Rec

HOG — 66.1% 63.0% 62.0% 55.3%

GLCM QuantLvl 8 77.1% 74.1% 76.2% 72.1%

GLCM QuantLvl 32 78.6% 75.8% 78.1% 74.2%

LBP R5 N16 75.8% 71.0% 72.0% 65.3%

LDP 3rd order R5 83.4% 82.5% 81.5% 79.6%

HOG* — 75.4% 73.6% 71.9% 66.4%

GLCM* QuantLvl 8 83.4% 82.5% 84.3% 83.7%

GLCM* QuantLvl 32 80.0% 76.5% 78.6% 74.6%

LBP* R5 N16 87.6% 86.7% 87.5% 86.6%

LDP* 3rd order R5 82.9% 81.9% 79.6% 76.8%

GLCM+ QuantLvl 8 89.8% 90.5% 86.4% 88.6%

GLCM+ QuantLvl 32 89.6% 90.3% 86.7% 88.7%

LBP+ R5 N16 89.1% 91.3% 89.3% 91.6%

Table 2. Comparison of CNN features with residual features using VLAD* and the
approach of [2]+: Accuracy (Acc) and average recall (Rec)

SVM RF

Features Property Acc Rec Acc Rec

CNN* – 72.6% 69.5% 76.1% 74.7%

CNN* Data augmentation 76.0% 75.7% 81.5% 81.7%

GLCM* QuantLvl 8 61.4% 55.1% 72.0% 70.4%

LBP* R5 N16 72.1% 68.2% 74.2% 72.2%

CNN+ – 77.6% 80.1% 76.5% 78.8%

CNN+ Data augmentation 79.9% 80.4% 81.3% 81.7%

GLCM+ QuantLvl 8 77.9% 81.3% 76.4% 80.1%

LBP+ R5 N16 79.5% 82.1% 80.5% 81.8%

For the evaluation of the CNN features, we only consider the approach of [2]
and VLAD encoding as they consistently outperformed FV. Moreover for the
comparison, we focus on the features GLCM and LBP due to their superior per-
formances. In Tab.2, the results of CNN features and the residual features are
illustrated. Using VLAD, CNN features exceed the classification results of all
residual features with an accuracy of 76.1% and an average recall of 74.7% using
the RF classifier. By using data augmentation, the results further improve to an
accuracy of 81.5% and an average recall of 81.7%.
Using the approach of [2], CNN features using data augmentation and LBP show
comparable classification results and outperform the residual features with av-
erage accuracies of 79.5% and 77.9% and average recalls of 82.1% and 80.4%,
respectively.

4 Discussion

Despite of the very small visual vocabulary size, FV and VLAD already reach
decent classification results and may have the potential to excel the algorithm
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proposed by [2]. However, with the current setup, the approach of [2] outperforms
our proposed method in case of all features. This might be due to the fact that
Jaremenko et al. incorporated additional information in terms of the mean and
standard deviation of all features and patches of an image, that is neglected
within the VLAD approach.
CNN features show comparable results and slightly outperform any other of the
tested features but still leave room for improvements using different CNN models.
As expected, using data augmentation the performance of CNN increases as a
result of the larger size and increased variance of the training set. Most likely
the results could be improved further with additional augmentation, but this
was not the aim of this paper. Considering the small amount of subjects of the
dataset, it would be beneficial to increase its variance by investigating additional
patients rather than performing augmentation using rotation. As a next step,
with an increased patient database it would be possible to perform a leave-one-
patient-out cross-validation to avoid intra-patient correlation effects during the
training of the classifier that yet may be existent within the LOSO-CV and fixed
dataset approach. The current results are promising but nonetheless, additional
effort is needed, to further develop the proposed approach to be able to reliably
support and improve diagnosis of vocal cord cancer during endoscopy.
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