

Deep Learning

A Disruptive Technology?

Tobias Würfl Pattern Recognition Lab, Friedrich-Alexander University of Erlangen-Nürnberg March 21, 2017

About Me

Tobias Würfl

- · PhD candidate
- CT reconstruction
- Consistency Conditions
- Deep Learning

What is Deep Learning?

Apples vs Pears

Apples vs Pears

Apples vs Pears

Feature Space

Feature Space

Apples vs Pears revisited

Apples vs Pears revisited

Artifical Neural Networks

Artifical Neural Networks

Deep Neural Networks

Evolution of Deep Learning

Algorithms

- Architectures
- Training

Evolution of Deep Learning

Algorithms

- Architectures
- Training

Graphics Cards

- Training speed
- Affordability

Evolution of Deep Learning

Algorithms

- Architectures
- Training

Graphics Cards

- Training speed
- Affordability

Frameworks

- Development speed
- Developer training

Deep Learning is

- very powerful
- extremely generic
- cheap to develop

What is Deep Learning good for?

Many applications

DEEP LEARNING EVERYWHERE

INTERNET & CLOUD

Language Processing

MEDICINE & BIOLOGY

ancer Cell Detection Diabetic Grading Drug Discovery

Video Captioning Video Search Real Time Translation SECURITY & DEFENSE

Face Detection Video Surveillance Satellite Imagery AUTONOMOUS MACHINES

Pedestrian Detection Lane Tracking Recognize Traffic Sign

Source: NVIDIA, Deep Learning on GPUs, 2016

Large Scale Image Classification 2012

ILSVRC

- \approx 1,4 million images
- labeled using mechanical turk
- dominated by Deep Learning

Large Scale Fine Grained Classification 2014

Deep Face

- Facebook
- Recognizing over 4000 persons
- Over 97% accuracy

Automatic Image Captioning 2014

a large elephant standing in a field of grass logprob: -8.37

a baseball player swinging a bat at a ball logprob: -5.24

Automatic Image Captioning 2014

a herd of elephants walking across a lush green field logprob: -6.48

a young boy is holding a baseball bat logprob: -7.65

System Specification

Deep Learning is bad at

- knowing it's limits
- explaining it's decisions
- failing gracefully

Playing Games 2013

Deep Q Learning

- 2600 games by one algorithm
- 29 out of 49 games better then humans

Source: Mnih et al., Human-level control through deep reinforcement learning 2013

Playing Incredibly Hard Games 2016

Alpha Go

- beat one of the best Go players
- beat him 4 : 1

Putting it to Use

Data Center Energy Consumption

- trained on history sensor data
- 40% decrease

Source: DeepMind.com

What about Healthcare?

What about Healthcare?

Siemens and Pattern Recognition Lab

Anatomical Landmark Detection 2016

- Works in 3D
- Across a range of modalities

Source: Ghesu et al., An Artificial Agent for Anatomical Landmark Detection in Medical Images, 2016

Mammography

Screening

- Very relevant
- Large false positive rate
- · Huge amounts of data

Towards Better Interpretability

Weakly Supervised Learning

- For free
- Shows the relevant areas
- Very active topic

Source: lunit.io

Skin Cancer

Epidermal lesions

Melanocytic lesions (dermoscopy)

Melanocytic lesions

Direct application of ImageNet architecture

- 70 % Accuracy
- At the level of dermatologists
- Works on smartphone images

Source: Esteva et al., Dermatologist-level classification of skin cancer with deep neural networks, 2017

Deep Learning for Reconstruction?

Deep Learning for Reconstruction?

Pattern Recognition Lab

Traditional Reconstruction

Neural Network

- Reconstruction mapped to network
- Iterating to train not for reconstruction

Source: Würfl et al., Deep Learning Computed Tomography, 2016

Conclusion

Risks

· Wide variety of applications

• ... but not always the best solution

- · Wide variety of applications
- Cheap to develop

- ... but not always the best solution
- ... which invites ad hoc solutions

- Wide variety of applications
- Cheap to develop
- Cheap to apply

- ... but not always the best solution
- ... which invites ad hoc solutions
- ... but tuned for graphics cards

- Wide variety of applications
- Cheap to develop
- Cheap to apply
- High accuracy

- ... but not always the best solution
- ... which invites ad hoc solutions
- ... but tuned for graphics cards
- ... but doesn't fail gracefully

Risks

- Wide variety of applications
- Cheap to develop
- Cheap to apply
- High accuracy

- ... but not always the best solution
- ... which invites ad hoc solutions
- ... but tuned for graphics cards
- ... but doesn't fail gracefully

Solves some previously intractable problems

Thanks for listening. Any questions?