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Abstract. A patient model is useful for many clinical applications such
as patient positioning, device placement, or dose estimation in case of X-
ray imaging. A default or a-priori patient model can be estimated using
learning based methods trained over a large database. Different methods
can be used to estimate such a default model given a restricted number
of the input parameters. We investigated different learning based estima-
tion strategies using patient gender, height, and weight as the input to
estimate a default patient surface model. We implemented linear regres-
sion, an active shape model, kernel principal component analysis and a
deep neural network method. These methods are trained on a database
containing about 2000 surface meshes. Using linear regression, we ob-
tained a mean vertex error of 20.8±14.7 mm for men and 17.8±11.6 mm
for women, respectively. While the active shape model and kernel PCA
method performed better than linear regression, the results also revealed
that the deep neural network outperformed all other methods with a
mean vertex error of 15.6±9.5 mm for male and 14.5±9.3 mm for female
models.

1 Introduction

Many medical applications even in the field of X-ray imaging using C-arm an-
giography systems, can benefit from the use of a default patient model. Such
a model can be generated using only a limited set of patient parameters (or
measurements). Although these default patient models cannot be expected to
fit perfectly to the patient, their accuracy is much better than what can be
achieved with a stylized model. In fact, if additional sensor data is available, a
default patient model can be used as initialization for further model refinement.
When a learning-based method is used to estimate a priori patient models, a
large database is needed for the training process. The accuracy of the estimation
approach depends not only on quality and the quantity of the available data but
also on different estimation methods. In this paper, we evaluate different statis-
tical estimation approaches and propose a deep neural network based approach.
These methods are implemented and evaluated on a database comprising surface
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Fig. 1. Pipeline of evaluated methods, from top : linear regression (LR), kernel PCA
(KPCA), active shape model (ASM) comprising principle component analysis (PCA)
and principle component regression (PCR), and finally deep neural network (DNN)
made up of a convolutional neural network (CNN) and an artificial neural network
(ANN).

models and associated patient meta data such as gender, height, and weight, to
highlight the performance of different approaches. This paper is structured as
follows. First, we introduce the related work in the field of shape representation
learning and shape estimation. Second, we provide descriptions of the imple-
mented methods. Afterwards, we evaluate on all of the different methods and
compare the results. We wrap up by discussing the proposed deep neural network
approach for our particular application.

1.1 Related Work

One can put our approach into prior context in two ways. Seen from one direc-
tion, our approach is related to methods which learn the shape representation
in a low dimensional space. In general, this is a difficult problem as changes in
pose between models need to be accounted for as well as differences in body
shape. The most widely used solution for this task is the Shape Completion and
Animation for People (SCAPE) method [1]. This approach assumes that shape
and pose are uncorrelated and solves the two problems separately at first and
jointly afterwards. Hasler et al. [2] encodes in the shape representation further
information, e.g., height and joint angle and trains a combined representation
of shape and pose simultaneously. Based on the SCAPE method, Pishchulin et
al. [3] proposed an improved method by incorporating mesh sampling into the
training loop. The second set of methods revolves around patient shape gener-
ation base on different input parameters. Seo et al. [4] introduced a framework
to generate a surface model using different input parameters. Rather than us-
ing parameters, Wuhrer et al. [5] uses anthropological measurements e.g., arm
length, waist circumference as an input to both initialize and refine the surface
model estimate.

2 Materials and Methods

In this paper, we implemented and evaluated different methods for default pa-
tient model estimation using patient gender, height, and weight as input. The
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approaches can be summarized in three steps: data transform, regression, and
shape reconstruction. During the data transform step, we map the input data
into a different space for the successive regression step. The mapping function
can be linear, e.g. , principal component analysis (PCA), or non-linear. In this
case, a kernel function or artificial neural network (ANN) may be applied. The
regression step maps the transformed data to the patient model itself or its low
dimensional representation. The reconstruction step, in turn, maps the represen-
tation of the patient model to its original space. In this paper, we evaluated four
different methods for patient model estimation. An overview of our approaches
is shown in Fig. 1. All these methods are learning based methods, and a database
is used for training. The data comprised male and female surface mesh data and
corresponding measurements. We can summarize the estimation method using
the equation

x̂ = F (X, g) (1)

where x̂ denotes the estimated patient model, g is the measurement of the pa-
tient, and X refers to the collection of surface meshes stored in the database.
The function F is the regression function that needs to be found. It depends on
the database contents.

2.1 Linear Regression

Linear regression (LR) is the most straightforward method for solving the regres-
sion problem. Let G = [g1, · · · , gk, · · · , gN] ∈ RK×N denote the measurement
matrix combining every measurement gi for surface mesh xi. Similarly the sur-
face mesh matrix is defined as X = [x1, · · · ,xk, · · · ,xN] ∈ RM×N. The variable
N refers to the number of meshes, M denotes the number of single mesh dimen-
sions, e.g., the number of vertices, and K is the dimension of the measurements.
In this application, K << M The LR introduces a regression matrix A ∈ RM×K

where
AG = X (2)

This problem can be solved simply by using singular value decomposition (SVD)
as A = XG+. Then the estimation patient model x̂ with given g is

x̂ = Ag (3)

2.2 Kernel Principal Component Analysis (PCA)

The kernel PCA method tries to improve the result of linear regression by intro-
ducing feature mapping using a kernel. In this case, the input measurements are
mapped to a feature space using kernel PCA. The feature space is mapped to
meshes using linear regression as introduced in the previous subsection. We use
Gaussian and linear kernels for the kernel PCA. The reason for feature mapping
is that the measurements, e.g., height and weight, may not be linearly related to
the mesh vertex positions. Take the weight, for example. An integral is needed
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to relate it to the vertex positions. Using a linear or Gaussian kernel function Φ
the estimation can be fomulated as

x̂ = AΦ (g) (4)

2.3 Active Shape Model

The motivation to use an active shape model (ASM) is to learn a joint subspace
between shape and measurement. To this end, we assume that shape and mea-
surements are correlated and that they can be described in the same subspace.
By using the method proposed in [6], the measurement vector g and the shape
x can be described as

x = x̄+Qsc (5)

g = ḡ +Qmc (6)

where c is the low dimensional representation of both shape and measurement,
and x̄ and ḡ denote the average shape and measurement. The matrixQs andQm

are the corresponding modes of variation of shape, and measurement respectively.
Except the low dimensional representation c, all other parameters are derived
from the database by solving a matrix decomposition problem [7]. The estimation
equation of the method is

x̂ = x̄+QsQ
+
m(g − ḡ) (7)

2.4 Deep Neural Network

The default model estimation problem can also be approached using a deep neu-
ral network (DNN) approach. The advantage of using a DNN is that we can learn
a potentially non-linear mapping between measurements and shape. We propose
a different neural network topology here than the general regression neural net-
works [8] as we try to estimate a high-dimensional output (mesh model) using a
low-dimensional input (height, weight). Instead of regressing to the mesh model
directly, we estimate a low dimensional representation of the mesh model. The
low dimensional representations we used here is the ASM parameter c trained as
described above. Other low dimensional representations e.g. bottleneck features
can also be used. We applied patch normalization to all the layers for robust
training.

An illustration of the network architecture is shown in Fig. 2. This network
takes height and weight as input and uses an ANN to expand the input vector.
The output of the ANN is then converted to an image and we use a convolution
neural network (CNN) layout (alternating convolution and max pooling layer) in
the following layers. The result of the CNN is being flatted into the ANN layout
and to the output layer. The combination of CNN followed by ANN is well
established as a robust method for multi-label classification [9] of images. The
proposed network also benefits from this structure and the evaluation showed
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Fig. 2. An illustration of the proposed regression network topology. Input parameters
are height and weight. Two DNNs were set up, one for meshes associated with women,
another one for meshes representing men.
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Fig. 3. The mean vertex error for male and female models using (from left to right): lin-
ear regression (LR), active shape model (ASM), kernel PCA with linear kernel (KPCA-
LK), kernel PCA with Gauss kernel (KPCA-GK), and deep neural network (DNN).

that this architecture works well for our regression problem. Estimating a surface
model using a DNN can be fomulated as

x̂ = x̄+QsFDNN (g) (8)

In Eq. 8, the symbol FDNN represents a trained network mapping function.

3 Evaluation and Results

For evaluation, we used a database comprising surface meshes and corresponding
meta data (measurement data) such as height and weight. In all, there were 865
male data sets and 1063 female data sets. In the evaluation, we randomly picked
ten percent of the data as the test set. The remaining 90% were used for training.
The error measure is the mean vertex error distance in mm between the estimated
surface mesh and the original surface mesh associated with the corresponding
height and weight. Female and male surface meshes were treated separately. The
results of the different methods are shown in Fig. 3.
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From Fig. 3 we learn that linear regression had the largest mean vertex error
with 20.8± 14.7 mm for male and 17.8± 11.6 mm for the female surface model.
Kernel PCA with Gaussian kernel improved the result for male and female model
to 18.4 ± 11.7 mm and 17.5 ± 11.1 mm, respectively. The active shape model
and kernel PCA with linear kernel lead to almost identical results with 15.8 ±
10.8 mm for male and 14.7±10.1 mm for female models. The deep neural network
outperformed all the methods, albeit sightly, with a mean vertex error of 15.6±
9.5 mm for male and 14.5± 9.3 mm for female models.

4 Discussion

Although the DNN method outperformed the linear method by introducing a
non-linear mapping, the gain obtain from using the deep learning method was
limited. One of the possible reasons can be that the size of the data set was too
small for deep learning to reveal its full potential. For our particular application,
it is difficult to expand the number of data as in other image based problem,
where the training data can be expanded by rotating or deforming the images.
In our case, we could deform surface meshes, but the corresponding changes in
height and weight would be unknown.
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