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Generation of Personalized Computational Phantoms 

Using Only Patient Metadata 

X. Zhong, N. Strobel, J. C. Sanders, M. Kowarschik, R. Fahrig, A. Maier 

Abstract–The use of personalized computational phantoms (CPs) describing a patient’s anatomy could enable attenuation correction 

for emission tomography without the need for a separate CT acquisition, thus reducing radiation dose to patients and cost to clinics. 

We propose a method to estimate such a phantom using only patient entry information (PEI) comprised of gender, height, and weight. 

The method uses a two-step machine learning-based approach whereby a joint subspace linking PEI to boundaries describing 

anatomical cavities is learned. Average organs from the training database are then deformed to fit within the cavities and used to 

populate them. We validate our method against two existing CPs and nine patient CT scans. The results show mean organ center of 

gravity displacement and volume errors in patients of less than 3 cm and 40%, respectively, in the lungs, liver, spleen, and kidneys. 

The relatively large volume error was most likely due to large inter-patient variations in organ mass. Nevertheless, our approach 

represents a step towards personalized CT-less AC and warrants future work to determine clinical relevance.

 

I. INTRODUCTION 

ATIENT surface and anatomical models – also referred to as 

computational phantoms (CPs) – have found widespread 

use for a variety of medical applications. Personalized CPs, 

have long been used for dosimetry monitoring and 

optimization of system settings [7], and more recent 

applications include optimization of acquisition settings and 

workflow for diagnostic CT [8] and monitoring of skin dose 

and patient positioning for interventional X-ray scans [6]. This 

promising technique could also be useful for positron- and 

single photon- emission tomography (PET and SPECT), 

which currently relies on CT scans acquired immediately 

before or after the emission scan to generate a μ-map for 

attenuation correction (AC). The ability to generate a patient-

specific model without a full CT could provide a means by 

which AC could be carried out without an extra transmission 

scan – reducing radiation dose to patients and cost for clinics.   

Existing approaches to generate personalized CPs include 

deformation of a template using scaling factors derived from 

anatomical measurements [4], [2], and body mass index (BMI) 

[3]. Unfortunately, these methods are based on standard 

measurements taken in a standing pose and do not meet 

requirements faced in diagnostic scanning, where patients 

usually lie supine on a table. This change in position may 

cause inaccuracies as current models have not been designed 

to adapt their anatomy based on a difference in pose. 

Moreover, scaling of a template is often insufficient to model 

deformations of internal organs. 

To enable use personalized CPs for AC in the routine clinical 

setting, any approach must be able to reliably estimate a  
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sufficiently accurate representation of the patient anatomy in 

the proper pose. Below, we propose a machine learning-based 

data-driven method to accomplish this using only metadata 

from patients. 

II. METHODS 

Our approach has two major components: determination of 

a patient-dependent boundary to guide organ placement, and 

filling of this volume with models of the organs themselves. 

We begin by learning a joint subspace linking patient entry 

information (PEI, comprised of gender, height and weight) to 

the body surface and internal body cavities under 

consideration (e.g. thoracic, abdominal). This pipeline is 

shown in Fig. 1. 
 

We use two separate databases consisting of 1) patient 

surface meshes (acquired in standing pose) and 2) segmented 

3D diagnostic scans (CT, MRI), both with associated PEI, as 

our training data for the joint subspace learning.  

Segmentations of the body surface of each MRI/CT volume, 

as well as of the internal organs and cavities are available. 

Database 1 provides a link between the PEI and surface 

meshes in standing pose. After registration with the surface 

mesh available from database 2, a further link is then 

established to the cavity borders contained therein. Database 2 

is measured in supine pose, and, as the position of body 

cavities is pose-related, we account for this difference by 

calculating a deformation field between the two using non-

rigid independent component analysis. We refer to this as the 

gravity deformation field and map it into the joint subspace.  

The result is a joint subspace that allows the estimation of 

organ cavity borders given solely the PEI.  
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The workflow for internal organ estimation is shown in Fig. 

2. First, we use the PEI and joint subspace from the previous 

step to estimate each cavity boundary separately. The 

associated volume in the training set is registered non-rigidly 

to the estimates using the symmetric image normalization 

approach [1]. The same deformation field is subsequently 

applied to internal organs. Subsequently, we average the 

resulting organ estimates to obtain our final organ estimation. 

As a last step, the position of the internal organ estimates is 

fine-tuned based on anatomical prior-knowledge. This ensures 

that the distance between organs known to be adjacent to each 

other is minimized. 

 
Figure 2. Workflow for internal organ estimation via cavity determination. 

 

We trained our framework using nine male full body CT 

scans from the Visceral data set and validated results on two 

voxel models: the Visible Human (VH) and the Golem (G) 

from the GSF family (PEI is publicly available in both cases). 

We also tested it on nine manually segmented full-body CTs 

acquired during a PET/CT protocol. We evaluated errors in 

the lungs, liver, spleen, and kidneys according to center of 

gravity (COG) displacement and volume differences.  

 

  

Figure 3. Internal organs of the Visible Human (green) and estimated 

corresponding models (red) overlaid in AP view (left). Organ volume 
estimation errors against numerical phantoms (right). 

 

III. RESULTS 

Fig. 3 (left) provides a visual impression of differences 

between our proposed method and a phantom by 

superimposing our estimation onto the VH voxel model in 

anterior-posterior (AP) view. Fig. 3 (right) shows the organ 

volume estimation error with respect to both phantoms. 

Largest errors were found in the liver and lungs for VH and G, 

respectively. The results from the patient validation are 

summarized in Fig. 4, where the COG error in mm (top) and 

the volume estimation error (bottom) are shown. Mean COG 

and volume errors were below 30 mm and 40%, respectively 

for all organs. 

IV. DISCUSSION AND CONCLUSION 

Our method yielded promising results when estimating the 

position of the internal organs, but volume errors are relatively 

large. As organ mass is known to vary widely between 

individuals, it is somewhat unsurprising that accurate 

estimation of organ volume is difficult with limited 

information. Another contributing factor is that our test data 

were taken from diagnostic scans of patients whose anatomy 

may be altered by underlying pathology. Although we were 

not able to account for all inter-patient variations, it is worth 

noting that existing computational modeling methods [4], [5], 

[3], [2] rely purely on statistical norms to find target volumes 

and are therefore even less able to account for individual 

differences. A limitation of our evaluation is that the number 

of organs considered is still relatively small. However, this 

shortcoming is not an inherent restriction of our method, but 

rather imposed by our training data.  

 
                                      

Figure 4. Mean organ COG displacements and volume estimation errors from 

patient validation. 
 

We proposed a novel personalized anatomical model 

estimation method. Using only PEI, a personalized patient 

model can be estimated with mean COG error below 3 cm and 

volume estimation error below 40%. To determine the 

ultimate clinical relevance of the method for AC, patient CPs 

 
Figure 1. Workflow for estimation of gravity deformation field and cavities. 



 

  
 

would need to be converted to μ-maps, and the resulting 

SPECT or PET reconstructions with CT-AC and CP-AC 

would need to be compared.  
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