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Deep Learning (DL) represents a key technological innovation in the field
of machine learning. Recent advancements have attracted much attention by
showing substantial improvements in a wide range of applications such as im-
age recognition, speech recognition, natural language processing and artificial
intelligence. In some cases the performance even surpasses human accuracy,
which motivated the introduction of a series of DL-based software products
and automatization solutions (for example Apple Siri, Google Now, Google Au-
tonomous Driving etc.). The same success also echoes in the research efforts
of the medical imaging community. However, in this case several constraints
such as data-availability, inherent data noise or lack of labeled data directly
affect the pace of advancements. We will start the tutorial by introducing the
core element of deep learning – the deep neural network, with its distinguishing
capability of automatically learning hierarchies of complex features directly from
the raw training data without the need for ‘manual’ feature engineering. Using
this knowledge-base we will discuss several state-of-the-art deep architectures. In
this context we will also present the algorithms required to train these models
as well as a practical analysis of regularization / data-normalization techniques
which prove to be essential in achieving high performance. This technology also
addresses inherent limitations faced in typical medical image analysis problems.
The most important of these is the task of object recognition / classification
which is an important prerequisite for many clinical applications, for example
image-to-image registration, advanced biophysical simulations and cell detection
or classification problems for cancer diagnosis. To complement the aforementioned
learning techniques for classification problems we will dedicate the third part of
our tutorial to applications of deep learning to segmentation problems. Here we
will outline the two predominant strategies, namely patch-based and single pass
segmentation approaches. For both strategies we will present specific systems
from current literature as well as examples of our own work in the areas of
DL-based volumetric image parsing. The last part of the tutorial is focused on
the inherent constraints and obstacles we face when using DL methods in the
context of medical image analysis and how they can be addressed. Specifically, we
will discuss recent developments in reducing and training large models, such as
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model compression and semi-supervised learning. We will also discuss solutions
that address the computational limitations of DL models for 3D data based on
our own research. The tutorial will be concluded with an open discussion related
to unresolved problems and the future of deep learning in the medical imaging
community.
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