

Projective Invariants for Geometric Calibration in Flat-Panel Computed Tomography

André Aichert

Pattern Recognition Lab (CS 5) Friedrich-Alexander University of Erlangen-Nürnberg 5th CT-Meeting, May 21st 2018, Salt Lake City, UT

FACULTY OF ENGINEERING

CT Calibration

Related Work

- "offline" calibration
 - \rightarrow Dedicated calibration scan before acquisition
 - \rightarrow Employs known (marker based) 3D phantom
 - \rightarrow Accurately manufactured
 - \rightarrow Designed for specific reproducible trajectories

Related Work

- "offline" calibration
 - \rightarrow Dedicated calibration scan before acquisition
 - \rightarrow Employs known (marker based) 3D phantom
 - \rightarrow Accurately manufactured
 - \rightarrow Designed for specific reproducible trajectories
- "online" motion/calibration correction
 - \rightarrow Assumes existing projection data
 - → Optimizes geometry parameters "after the fact" (e.g. consistency conditions)

Offline Calibration

- Parametrization
 - \rightarrow Either: Model parameters for trajectory (e.g. circular)
 - → Or: Parameters of *each* linear projection (projection matrix)
- Detection of calibration objects in images
- Model fitting

FACULTY OF ENGINEERING

Estimation of Projection Matrices

from Point Correspondences

Multiple View Geometry in Computer Vision

Richard Hartley and Andrew Zisserman Cambridge University Press, March 2004.

Calibration with DLT

- Direct linear transformation
 - \rightarrow Linear least squares estimate for projection matrix
 - \rightarrow Efficient, fast, simple, *but*...

Calibration with DLT

Direct linear transformation

 \rightarrow Linear least squares estimate for projection matrix

 \rightarrow Efficient, fast, simple, *but*...

- Unstable in presence of outliers
- Assumes perfect point matches

Calibration with DLT

Direct linear transformation

 \rightarrow Linear least squares estimate for projection matrix

 \rightarrow Efficient, fast, simple, *but*...

- Unstable in presence of outliers
- Assumes perfect point matches

May 21st 2018

9

Standard Pipeline

Standard Pipeline

Standard Pipeline

Computer Vision Answer

Find Analytically special image points which are

- \rightarrow Locally defined for a certain scale
- \rightarrow **Invariant** w.r.t. scale, lighting etc.
- \rightarrow Salient compared to other points

Computer Vision Answer

Find Analytically special image points which are

- \rightarrow Locally defined for a certain scale
- \rightarrow **Invariant** w.r.t. scale, lighting etc.
- \rightarrow Salient compared to other points

Matching Problem: PDS2 solution

\rightarrow Every sequence of 7 beads is unambiguous!

Problem Solved?

\rightarrow Accurately manufactured

 \rightarrow Designed for specific reproducible trajectories

FACULTY OF ENGINEERING

The Cross-ratio of Collinear Points

A Projective Invariant Property

Multiple View Geometry in Computer Vision

Richard Hartley and Andrew Zisserman Cambridge University Press, March 2004.

Invariant Theory

18

May 21st 2018

The Cross-ratio

$$\frac{(a-c)\cdot(b-d)}{(a-d)\cdot(b-c)}$$

$$\stackrel{\text{def}}{=} \operatorname{cr}\left(a, b; c, d\right)$$

- Definition in line coordinates
- Projective: Determinant expression
- Cross-ratio is invariant to dot-product

The Cross-ratio: a Projective Invariant

$$\frac{(a-c)\cdot(b-d)}{(a-d)\cdot(b-c)}$$

 $\stackrel{\text{def}}{=} \operatorname{cr}\left(a, b; c, d\right)$

- Definition in line coordinates
- Projective: Determinant expression
- Cross-ratio is invariant to dot-product

FACULTY OF ENGINEERING

Phantom Design

Possible Point Configurations

Beads placed at regular distance n=9

0 2	0	0	0						0
14	0	0		0					0
2 7	0	0			0				0
3 11	0	0				0			0
4 21	0	0					0		0
5 49	0	0						0	0
6 1	0		0	0					0
73	0		0		0				0
85	0		0			0			0
99	0		0				0		0
10 21	0		0					0	0
11 1	0			0	0				0
12 2	0			0		0			0
13 5	0			0			0		0
14 11	0			0				0	0
15 1	0				0	0			0
16 3	0				0		0		0
17 7	0				0			0	0
18 1	0					0	0		0
19 4	0					0		0	0
20 2	0						0	0	0

Beads placed at regular distance n=9

0.0	0	0	0						0	0	0	•						0
0 2	X	0	U	•					0	0	X	U	•					0
14	Q	0		0					0	0	Q		0					0
27	Q	0			0				0	0	O			0				0
3 11	Ο	0				0			0	0	0				0			0
4 21	0	0					0		0	0	0					0		0
5 49	0	0						0	0	0	0						0	0
6 1	Ŏ		0	0					0	0	-	0	0					0
73	Ŏ		0		0				0	0		Ŏ		0				0
8 5	Ŏ		0			0			0	0		Ŏ			0			ο
99	Ŏ		0				0		0	0		Ŏ				0		0
10 21	Ŏ		0					0	0	0		Ŏ					0	0
11 1	Ŏ			0	0				0	ο			0	0				0
12 2	Ŏ			0		0			0	0			Ŏ		0			0
13 5	Ŏ			0			0		0	0			Ŏ			0		0
14 11	Ŏ			0				0	0	0			Ŏ				0	ο
15 1	Ŏ				0	0			0	0			-	0	0			0
16 3	Ŏ				0		0		0	0				Ŏ		0		0
17 7	Ŏ				0			0	0	0				Ŏ			0	0
18 1	Ŏ					0	0		0	0				-	0	0		0
19 4	Ŏ					0		0	0	0					Ŏ		0	0
20 2	Ŏ						0	0	0	0						0	0	0
							-	-	-	-							-	-

Beads placed at regular distance n=9

0 2	0	0	0						0	0	0	0						0
14	0	0		0					0	0	0		0					Ο
2 7	0	0			0				0	0	0			0				Ο
3 11	0	0				Ο			0	0	0				0			Ο
4 21	0	0					0		0	0	0					0		Ο
5 49	0	0						0	0	Ο	0						0	Ο
6 1	0		0	0					0	0		0	0					Ο
73	0		0		0				0	0		0		0				0
8 5	0		0			0			0	0		0			0			0
99	0		0				0		0	0		0				0		0
10 21	0		0					0	0	0		0					0	0
11 1	0			0	0				0	0			0	0				0
12 2	Ο			0		0			0	0			0		0			0
13 5	0			0			0		0	0			0			0		0
14 11	0			0				0	0	0			0				0	0
15 1	0				0	0			0	0				0	0			0
16 3	0				0		0		0	0				0		0		0
17 7	0				0			0	0	0				0			0	0
18 1	0					0	0		0	0					0	0		0
19 4	0					0		0	0	0					0		0	0
20 2	0						0	0	0	0						0	0	0

Beads placed at regular distance n=9

0 2	0	0	0						0	0	0	0						0
14	0	0		0					0	0	0		0					0
2 7	0	0			0				0	0	0			0				0
3 11	0	0				0			0	0	0				0			0
4 21	0	0					0		0	0	0					0		0
5 49	0	Ο						0	0	0	0						0	0
6 1	0		0	0					0	0		0	0					0
73	0		0		0				0	0		0		0				0
8 5	0		0			Ο			0	0		0			Ο			0
99	0		0				0		0	0		0				0		0

Example set of 18 unambiguous point configurations.

Cross-ratio as a Descriptor (cr=2)

Cross-ratio as a Descriptor (cr=3)

Cross-ratio as a Descriptor (cr=4)

Cross-ratio as a Descriptor (cr=10)

Beads placed at increasing distance from center

FACULTY OF ENGINEERING

Phantom Design

Flexibility in Spacial Arrangement

For Reference: PDS2

n=28

Randomized phantoms with varying number of points.

Randomized phantoms with varying number of points.

Randomized phantoms with varying number of points.

n=90

Randomized phantoms with varying number of points.

n=120

43

Example Matching

n=60

FACULTY OF ENGINEERING

Validation

using Numerical Simulations

Trajectories

Evaluation on Circular and "Spherical" trajectories

May 21st 2018

Results

47

Results – comparison to PDS2

FACULTY OF ENGINEERING

Conclusion

Conclusion & Future Work

- A "building block" for geometry calibration phantoms
 - \rightarrow Flexible w.r.t. truncation, scale etc.
 - \rightarrow Cheap manufacturing
 - \rightarrow Treats all directions equally

Conclusion & Future Work

- A "building block" for geometry calibration phantoms
 - \rightarrow Flexible w.r.t. truncation, scale etc.
 - \rightarrow Cheap manufacturing
 - \rightarrow Treats all directions equally

- Other computer vision algorithms
 - \rightarrow Factorization, stratification and bundle adjustment
- Motion tracking individual blocks

May 21st 2018

Preview: factorization

Questions.

Publication partially covered by this talk

Projective Invariants for Geometric Calibration in Flat Panel Computed Tomography

A. Aichert, B. Bier, L. Rist and A. K. Maier Accepted for CT Meeting 2018

André Aichert | Pattern Recognition Lab (CS5) | Geometric Calibration using Cross Ratios

The Cross Product and the Plücker Matrix

$$\mathbf{l} = \mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_1 b_2 - b_1 a_2 \\ b_0 a_2 - a_0 b_2 \\ a_0 b_1 - a_1 b_0 \end{pmatrix} = \begin{pmatrix} l_0 \\ l_1 \\ l_2 \end{pmatrix},$$
$$\mathbf{b}^\top \mathbf{a} - \mathbf{a}^\top \mathbf{b} = \begin{pmatrix} a_0 b_0 - b_0 a_0 \\ a_1 b_0 - b_1 a_0 \\ a_2 b_0 - b_2 a_0 \end{pmatrix} \begin{pmatrix} a_0 b_1 - b_0 a_1 \\ a_1 b_1 - b_1 a_1 \\ a_2 b_1 - b_2 a_1 \end{pmatrix} \begin{pmatrix} a_0 b_2 - b_0 a_2 \\ a_1 b_2 - b_1 a_2 \\ a_2 b_2 - b_2 a_2 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & l_2 & -l_1 \\ -l_2 & 0 & l_0 \\ l_1 & -l_0 & 0 \end{pmatrix}.$$

Rest of this talk: how to figure out P?

 $\mathbf{x} \cong \mathbf{P}\mathbf{X}$

- ${\bf x}$ is up to scale identical to ${\bf P}{\bf X}$

 \rightarrow Cross-product is zero

 $\mathbf{x}\times\mathbf{P}\mathbf{X}=\mathbf{0}$

• Can be written in matrix form

May 21st 2018