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Abstract—We present a new phantom design for geometric
calibration of flat-panel detector CT systems. This work does
not address a specific phantom but rather a toolbox for building
very different phantoms for special trajectories and a general
software to detect them and determine the geometric parameters
of the scanner. Flexible robot trajectories and almost arbitrary
distribution of metal beads in space are supported. A calibration
algorithm is devised, which exploits a projectively invariant
descriptor of four collinear points to solve the correspondence
problem and determine the projection matrix for each projection.
A proof-of-concept numerical study is presented with a randomly
generated example phantom. We present a comparison to the
frequently used PDS2 phantom.

I. INTRODUCTION

Robotic C-arms with a flat-panel detector are becoming
increasingly flexible and support circle-line, saddle, rectangu-
lar and other trajectories. Using non-circular trajectories may
be beneficial in some applications for more complete data,
less redundancy or simply working with hardware and space
constraints. However, the geometric calibration of a flat-panel
CT system based on robot odometry alone is difficult, since
small variations in joint angles have a large effect in terms of
detector pixels. Combined approaches are feasible [8]. Image-
based approaches are therefore preferable for reproducible tra-
jectories and it remains common practice to calibrate scanner
geometry using an X-ray compatible phantom prior to data ac-
quisition. These calibration phantoms are typically comprised
of radiopaque spherical markers, which are manufactured at
high accuracy, although other forms exist [3]. In addition, not
all phantoms work for general projections due to their shape
[7]. See Mennessier et al. for some design considerations [6].

Most calibration algorithms determine only few parameters
of the (perfectly elliptical, helical etc.) trajectory, instead of
the projection for individual projections, e.g. [1], [9]. Other
approaches, including this work, understand the trajectory
more generally as a set of independent projections, in no
particular order [7], [6], [3], which makes them generally
applicable. In this context, calibration with a flat-panel detector
is a standard computer vision problem, merely with X-ray
images instead of visible light photography. It is well-known,
that the determination of an 11 DOF projection matrix requires
six images of known 3D points, no more than four of which
may be coplanar. If we assume a decently manufactured X-ray
detector has square pixels, only 9 DOF remain [2]. The reason
why established methods for pose estimation, factorization and
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Figure 1. Example 1 (left): The corss-ratio as a projectively invariant property
cr (a,b; c,d) = cr (a′,b′; c′,d′). Example 2 (right): Projective scales.
Three collinear points p0, p1 and the horizon p∞ define a projective scale
which allows us to take distance measurements directly in a photograph. Here,
cr ( p∞, p0; p1 x) = 7 is the distance of x to p0 in units of the distance
between p0 and p1.

auto-calibration are not directly applicable, is that they all rely
on descriptors for matching corresponding points. Descriptors
are usually based on texture, color or local gradients, none of
which are salient for X-ray projections of a bead-phantom.

The contribution of this paper is a flexible and general
phantom design comprised of metal beads for the determina-
tion of geometric parameters of an X-ray source and detector
from its projections images.We suggest a descriptor based on
four collinear metal beads, among them exactly one larger
bead, in the following referred to as “pins”. A phantom may
be comprised of five to about thirty of such pins, arbitrarily
arranged in space. Their detection is robust, since it is unam-
biguous and independent. We are able to solve the matching
problem with as little as three correctly detected pins. This
paper presents the underlying theory and a proof-of-concept
based on numerical simulation, as well as comparison to the
established PDS2 phantom [7]. We show that our phantom
works equally well when projected from arbitrary angles and
therefore supports not just circular, but also unusual (arbitrary)
trajectories. Manufacturing accuracy does not limit calibration
accuracy. We suggest cheap manufacturing using 3D-printing,
since our solution of the matching problem allows standard
Computer Vision algorithms to replace accurate manufacturing
of phantom hardware with an accurate measurement process
of both structure and motion.

II. ESTIMATION OF PROJECTIVE TRANSFORMATIONS

A. Objective

In the following, we outline the established gold-standard
algorithm in computer vision for the estimation of the projec-
tion matrix from detected 2D points and a known 3D geometry.
We understand geometric calibration in the sense that a single
3×4 projection matrix P must be estimated for each projection



image, using a pre-defined 3D phantom. The phantom consists
of metal beads, which are easy to detect in 2D projection
images (see Section IV-A). The problem is then to find the
linear transformation between two unordered sets of points.
The algorithms for both geometric calibration (i.e. estimation
of a projection matrix) and registration (i.e. estimation of a
linear 2D or 3D transformation) or fiducial-based rigid body
tracking (i.e. rigid 3D pose) from points, are very similar
and can be addressed by the algorithms in this work. For a
concise mathematical notation, we will restrict ourselves to the
calibration problem and present an overview of the process in
this section.

Given detected 2D image points xi ∈ P2 in the projective
plane (image) and known 3D points yj ∈ P3 in projective
three-space (world), we seek to estimate a projection matrix
P, which minimizes the reprojection error

argmin
P

1

|M|
∑

(i,j)∈M

d (xi, P · yj) , (1)

whereM⊂ N2
0 is a set of index matches between the detected

2D points and the known 3D points and d(·, ·) is the euclidian
distance.

Given a set of at least 6 point matches one may obtain an
algebraic estimate of P using the Direct Linear Transformation
(DLT) [2, Ch. 7]. In order to be robust against outliers however,
RANdom SAmpling Consensus (RANSAC) applies DLT to
six randomly selected matches many times and determines the
quality of the current estimate. A good measure of quality is
the proportion of detected 2D points, for which a projected
3D point is close-by. The algorithm terminates when that
proportion reaches a certain upper threshold, or, after a fixed
number of iterations. Once RANSAC has produced a stable
algebraic estimate of P, bundle adjustment [2, Ch. 18] can
be used to refine the solution by minimizing the non-linear
geometric error according to Eq. 1.

B. Matching and Invariant Descriptors

The performance of RANSAC strongly depends on the
frequency of outliers in the data, i.e. the chance that a random
candidate match is incorrect. Unfortunately, there exist N !

(N−6)!
possibilities for a random point match with N points, so a
better heuristic for establishing candidate matches than random
guessing is mandatory. The common approach is to find a local
descriptor of the points, typically based either on neighboring
image data or local structure of the data. A good descriptor
is (1) invariant to the observed transformations, so it will
be possible to identify it across two images (2) local, so
that occlusion or overlap in one part of the object does not
affect the matching in other regions (3) salient, so that no two
different points shall have a similar descriptor.

We can specifically design a calibration phantom, so prior
knowledge reduces the number of possible point matches. We
demand that any metal bead in the phantom is collinear with
three other beads and that exactly one of these beads has
a significantly larger radius. This enables us to determine a
sequence of the points. We refer to a a set of four beads in this
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Figure 2. Example pin configurations. The left pins have a positive descriptor
(green background) while the right pins have negative descriptor (red backgr.)
due to the position of the big bead. Note that the 11 rows at the bottom show
pin configurations with identical descriptor to one of the top ten rows.

configuration as a “pin”. Given four collinear points, the cross-
ratio can be used as an invariant descriptor. By combining prior
knowledge and a descriptor, we will show that the matching
problem is effectively solved for a wide range of possible bead
configurations in space. The main novelty of the paper lies in
an elegant solution to the matching problem.

III. A PROJECTIVE INVARIANT FOR MATCHING POINTS

A. The Cross-Ratio

Many familiar properties of an object change under pro-
jective transformation, notably, length, area, angles and ratio
of lengths are not generally preserved under X-ray projection.
However, some invariant properties prevail, notably incidence
relations, such as two lines meet in a point and the cross-
ratio. The cross-ratio bears its name since it is also the
ratio of ratios of the distances between four points on a
line. Find an illustrative example of its application to take
distance measurements directly in photographs in Figure 1.
We are interested in this quantity, because it remains constant
under projective transformation, including translation, rotation,
scaling and especially projective distortion. Using coordinates
a, . . . , d on the line, the cross-ratio is defined

λ = cr (a, b; c, d) def
=

(a− c) · (b− d)
(a− d) · (b− c)

∈ R. (2)

B. Practical Implementation in Arbitrary Dimension

In order to work with measured 2D (or, analogously
3D) points, we take the practical approach of projecting a
set of approximately collinear points in arbitrary dimension
b, c, d, a ∈ Rn to the real line R with the scalar product
and use Equation 2 to compute the cross-ratio. W.l.o.g. let the
euclidean points c, d lie between a and b. The scalar product
with the correctly scaled vector defines a coordinate frame

i =
a− b

‖a− b‖2
, (3)

between b = 0 and a = 1 on the line with

c = i> (c− b) < d = i> (d− b) ∈ ] 0, 1 [ . (4)
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Figure 3. Left: Example of a randomly generated phantom containing
several randomly distributed pens (sets of four collinear beads each). Lines
with different cross-ratios are color-encoded by their index. Right: Imperfect
detection of the same cross-ratios in a simulated projection. In this case there
were 30 correct and 8 incorrect initial point matches in M?. After RANSAC,
all 96 detected beads were correctly matched, while 6 beads were truncated
at the top and 6 were not detected due to an overlap.

For points not exactly the measured cross-ratio is

c̃r (a, b, c, d) def
= cr (a, b, c, d) =

d− cd
c− cd

> 0. (5)

Note that i>· is itself a linear projection, to which the cross-
ratio is invariant, so this is consistent with Equation 2 provided
that the points are exactly collinear. We observe a hyperbolic
growth from λ = 0 at d = 0 towards infinity at d = 1.

C. Phantom Design

We suggest a phantom design based on several sets of four
collinear metal beads. We allow two different radii of beads
rl > rs. The difference between the radii should be sufficient
to make classification into large and small beads easy, even
under projective distortion (size is not a projective invariant).
Each collinear four-set shall contain exactly one large bead,
because the cross-ratio is symmetric with respect to the order
of points cr (a, b; c, d) = cr (d, c; b, a). We define that the
large bead shall be named either b or c, thus resolving the
ambiguity. In applications where differently sized beads are
not an option, p2 invariants [5] provide an alternative.

IV. CALIBRATION ALGORITHM

A. Bead Detection and Approximate Collinearity

We employ the fast radial symmetry transform (FRST)
[4] for bead detection, parametrized by two sets of radii in
image pixels which correspond to the sizes of projected large
and small beads. In experiments we found that running the
algorithm twice sometimes produces spurious detections of
small beads. We therefore remove detected small beads, when
their center is less than one radius away from the center of
a detected large bead. Selection of parameters for the FRST
is done manually within this work. Next, we extract sets
of collinear points. We loop over all four-sets of detected
points which contain a large bead and test for approximate
collinearity with a simple distance-threshold, called candidate
pins. We suggest two other heuristic priors for better stability.
First, we ignore all large beads which form part of more than
three candidate pins. If two coplanar 3D pins project to the

same 2D line, this produces 2 ·binomial(3, 6) = 40 candidates
of which only two are correct detections, so it is safer to just
ignore all of them. Second, we assume that beads are spread
out along the pin. If the length of a pin is larger than 20 times
the shortest distance between any two of its beads, it is an
unlikely candidate and we also ignore it.

B. Descriptor and Initial Matching

Since we require b < c < d < a, we always obtain cross-
ratios cr (a, b, c, d) > 0. This will be identical whether b
or c is the large bead in the configuration. To differentiate
between those two cases, we use λ as a descriptor if b is a
large bead, and −λ otherwise. The initial matching is defined
by assignment of the best match of all detected sets of four
collinear points, based on the descriptor. The initial matching
is given by M? ⊂ N2

0, which contains indices of two points
which are candidate matches. However, M? may still contain
a relatively large number of outliers. An example for this case
is visualized in Figure 3, right.

C. Robust Estimation of Projection Geometry

A algebraic estimate of the projection matrix P is unreliable
in the presence of outliers. We employ RANSAC to find,
with high probability, a set m ⊂ M? with |m| = 6, whose
estimated projection matrix Pm explains most detected points
given the known 3D bead locations. By assignment of these
beads to the closest projection of the known 3D beads, we can
establish an improved and relatively complete set M ⊂ N2

0,
which likely contains many more point matches than M? but
no outliers. The final step is a re-estimation of P using all
points contained in M. This work is restricted to a straight-
forward algebraic estimation using DLT. A slightly better
solution may be found using non-linear optimization of the
geometric error and bundle-adjustment.

V. VALIDATION AND EXPERIMENTS

A. Validation with Source Positions on a Sphere

For validation we created a digital phantom based on
an approximately equal distribution of points on a sphere
surface using the Fibonacci series and the golden angle. It
is randomized by misaligning collinear points from the ray
though to the center of the sphere with m = 27 lines
and n = 108 beads at a size of 3.2 mm for large beads
and 1.6 mm for small beads (same bead sizes and number
of points as the PDS2 phantom). An instance of such a
phantom is shown in Figure 3. We present 3456 noise-free
projections of 1240 px×960 px of a phantom . We presents a
validation with with a spacing of 0.308 mm

px from all directions
(sampled by equal longitudinal and latitudinal angles) with a
source-to-detector-distance of 325 mm and a source-isocenter-
distance of 200 mm, where the source positions are distributed
on a sphere instead of a circle. We simulate the phantom
instance from Figure 3, to compute projection matrix P̃ with
the proposed algorithm (without non-linear refinement) and
compare to the ground truth projection P. The target projection
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Figure 4. Distribution of errors and number of points used in 3456
calibrations from Figure 5, top. There were no outliers.

error (TPE) is evaluated on 500 random points within the field
of view of ∼ 20 cm radius according to

TPE =
∑
i

d
(
P̃ · yi, P · yi

)
. (6)

The results are themselves projected to a sphere for visual-
ization, see Figure 5. A distribution of errors, residuals and
number of points can be found in Figure 4. For all 3456
projections more than 54 points were correctly matched, with
an average of 100.1 out of 108 points detected. A mean error
of 0.73 px was achieved at a mean residual of just 0.177 px.
The mean error of the estimated source position was 0.43 mm.

We repeated the experiment for projections of the PDS2
phantom. The PDS2 phantom is designed for circular trajec-
tories so its detection for steep angles is more difficult and
a comparison is fair only close to the equator. There were
1243 usable projections with more than 54 points correctly
matched, compare Figures 5, bottom. The results for those
views are comparable to the suggested phantom with a mean
target projection error of 0.79 px. The residual of 0.21 px. The
mean error of the estimated source position was 0.63 mm.

VI. DISCUSSION AND CONCLUSION

We present a new phantom design for geometric calibration
of FD-CT systems. Users may quickly build phantoms of
arbitrary size and shape, all of which can be analyzed with the
same software. The phantoms are comprised of short pens that
contain four metal beads each. The detection and matching is
based on the cross-ratio, which allows robust detection, even
when parts of the phantom are truncated. We present a proof of
concept with a randomized numerical phantom. The suggested
phantoms can work equally well if viewed from all spacial
directions and support a more equal distribution of beads in
space. Manufacturing accuracy does not limit the calibration
accuracy, since the descriptor is the missing link to apply
standard Computer Vision algorithms such as factorization and
bundle-adjustment to recover both geometry of the phantom
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Figure 5. Evaluation of matching algorithm. Color encodes the number of
points correctly detected and used for estimation of the projection matrix.
The displayed range is from 54 (deep blue) to 108 (bright green). Top row:
Results for an evaluation with projection direction vectors on a sphere. See
also Figure 4, right. Bottom row: Results for the same evaluation using a
naive algorithm for the PDS2 phantom.

and parameters of the projection. The long-term goal of the
project is to 3D print low-cost elements (pens), which the
user can freely distribute in space. Application with unusual
trajectories or varying size of the scanned objects are ideal for
an application in material testing, for instance. The algorithm
may also be useful to research as a tool for marker based
tracking and fiducial-based registration.
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