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Abstract: Collimators control the field of view (FoV) by using thick blades to block X-rays
leaving the source to image the patient. When the blades are adjusted to reduce the FoV, the
area of the patient receiving radiation is reduced. Current fluoroscopy systems allow only for
manual collimation by the operator. This can be done from the control panel using physical
controls. Nonetheless, manual collimation is time consuming, causes interruption to the clinical
Workflow, and is operator dependant. This is because the operator has to first identify a region
of interest (RoI), then collimate around the RoI depending on the type of the procedure, workflow
phase, and interventionist‘s preferences. In this work, we propose a learning based framework
that can autonomously predict the workflow phase and localize an object of interest during
congenital cardiac interventions (CCIs). In particular, we propose to learn the task of workflow
recognition by using a convolutional neural network model. For training and evaluating our
model, 4500 images from 25 clinical cases acquired during Biplane CCIs at Evelina London
Children’s Hospital, UK, were used. A training accuracy of 99% and an evaluation accuracy of
86% were achieved. The framework allows for optimal and automatic adjustment of collimation
depending on the predicted workflow around the localized devices, which we refer to as context
specific collimation.

1. INTRODUCTION

Image guided interventions (IGIs) are being performed for an increasing number of proce-
dures with longer screening time [1]. While C-arm fluoroscopy is still the imaging modality of
choice for IGI, it has the disadvantage of causing radiation exposure. Children with acquired or
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congenital cardiac diseases (CCD) need multiple IGIs starting from infancy, and are likely to
have repetitive radiation exposure [2]. Moreover, compared with adults, children have higher
radiosensitivity [3]. They also have higher proportion of the surrounding tissues exposed to
radiation due to their smaller size [2].

Confining the field of view (FoV) to only that of interest reduces radiation exposure. Col-
limators control the FoV by using thick blades to block X-ray leaving the source to image the
patient. When the blades are adjusted to reduce the FoV, the area of the patient receiving radia-
tion is reduced. The collimator blades can be adjusted by both, the radiographer and the system.
However, the X-ray system automatically adjusts collimation only in two circumstances: when
digital magnification is changed (i.e. magnifying a small imaged region of interest (RoI) to cov-
er the screen); or when the X-ray source to detector distance is changed. In both cases, the aim
is to avoid unnecessary irradiation of the patient’s tissue outside the area visible on the screen.
The operator can manually adjust the collimation from the control panel using physical con-
trols. When the operator adjusts the blades position, the adjusted FoV is overlaid onto the last
acquired image for a preview. This means that no use of fluoroscopy is required for positioning
the blades so the patient is not needlessly irradiated [4].

Nevertheless, manual collimation requires the operator to first identify the RoI, then to adjust
the FoV to acquire an image of the identified RoI with optimal collimation. Adjusting the FoV
depends on: 1) type of procedure, 2) the workflow phase, and 3) interventionist‘s preferences.
For example, navigating to the target area would usually require a larger FoV, than deploying a
device. A novice surgeon would also usually require a larger FoV than an experienced surgeon
during the same phase to aid guidance. Optimal collimation is thus time consuming, causes
interruption to the clinical workflow, and is very dependant on the operator. An automated
approach is clearly beneficial. Such an approach should be able to automatically identify the RoI
and to collimate around the RoI depending on the surgical workflow phase, type of procedure
and devices, and surgeon preferences.

Eye controlled collimation was proposed to automatically position a dynamic collimator
around a RoI the operator is gazing at. The dynamic collimator has a semitransparent plate
which partially attenuates the X-rays beam and an aperture through which X-ray can leave
unattenuated [5]. This, however, requires the patient or system to keep moving so that the eye-
tracked RoI is kept in the unattenuated collimator region. The surgeon also has to step back
from the working position into the eye tracker capture range. Moreover, during IGI procedures,
surgeons has protective eyewear, thus the eye tracker might be less effective.

Another learning-based approach identifies an object of interest in an initial X-ray image
then predicts the location of that object in the next X-ray image before acquisition. When the
next image is acquired, the predicted location is utilized to autonomously collimate the X-ray
beam to a region around that location [6]. The region size, nonetheless, is predefined, and does
not depend on the workflow phase. The method was evaluated during needle path planning and
needle guidance and achieved an optimal collimation compared to the initial X-ray image. The
needle is a rigid high contrast object, with a straight trajectory, thus this approach might not
cope with low contrast and flexible objects, such as guiding-catheters and guidewires used in
IGIs.

In this paper, we propose a learning based framework that can autonomously predict the
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workflow phase and identify an object of interest during congenital cardiac interventions (C-
CIs). This allows the FoV to be automatically adjusted in varying amounts, depending on the
predicted workflow around the identified object of interest, which we refer to as context specific
collimation.

2. METHODS

2.1 Overview

The framework we propose is illustrated in Fig. 1. Once a new X-ray image is acquired, in-
terventional devices are detected and localized in real-time. The detected workflow phase along
with predefined settings can then allow for context specific collimation. The steps involved are
described in more detail in the following.

Figure 1: System overview. Present devices are detected and localized, and the workflow phase
is identified. These information is then used to provide context specific collimation, together
with predefined settings.

2.2 Device Detection and Localization

Real-time interventional tool extraction in IGIs is a challenging task [7, 8, 9]. This is mainly
due to the low signal to noise ratio which results in low image contrast. This makes the distinc-
tion between tools and anatomical background, such as ribs and vertebrae difficult. Moreover,
images are usually acquired at a high frame rate (e.g., 15 frames per second), which requires a
fast detection method. Large deformation of the devices and motion artifacts are also a source
of errors.

In [10], we proposed a method for detecting and localizing guiding-catheters and guidewires
in CCIs. The method was developed to be used in real time by building a localized machine
learning (ML) algorithm to distinguish between wires and artifacts. The potential wire-like
objects were obtained from vessel enhancement filters, and input to the ML algorithm. Results
showed a 83.4% success rate of detection. Detection accuracy was 0.87 ± 0.53 mm, which was
measured as the error distances between the detected devices, and the manually annotated ones.

2.3 Phase Detection

Surgical workflow recognition is an active topic in the computer-assisted interventions com-
munity. Various features have been proposed for the phase recognition task, such as tool usage
signals, anatomical structures, surgical actions, and visual features. A combination of these
features can also be used. Several types of surgeries were investigated. These mainly included
cataract, neurological, and laparoscopic surgeries [11].
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To our knowledge, the task of surgical workflow recognition in IGIs has not yet been in-
vestigated. In this paper, we propose, this task can be achieved by learning the visual features
from X-ray images available in the interventional room. In particular, we propose to learn the
features using a convolutional neural network (CNN), which will be described in more detail in
Sec. 3. The task will be, to identify the following three main phases during IGI interventions:

Figure 2: Example images from a clinical CCI procedure. a) During the navigation phase,
b) during the pre-deployment phase, and c) during the post-deployment phase. Various inter-
ventional devices are indicated with arrows in addition to the collimated area.

• Navigation phase: During this phase, guiding-catheters and guidewires are manoeuvred
from the point of access until the RoI is reached. We denote this phase as phase I. Fig.
2.a shows an example CCI image from phase I, where a guidewire can be seen.

• Pre-deployment phase: The therapeutical device (e.g., stent, balloon, valve, etc.), which
is mounted on a delivery-catheter, is guided along the guidewire, and is then positioned
at the targeted area, ready for deployment. We denote this phase as phase II. In Fig. 2.b,
which shows an example CCI image from phase II, a delivery-catheter is present with the
stent mounted and ready for deployment.

• Post-deployment phase: After the therapeutical device has been deployed, the deployment
accuracy is assessed. We denote this as phase III. Fig. 2.c shows an example CCI image
from phase III, where the stent has been deployed.

Figure 2 gives a concrete clinical example of supoptimal collimation. Whereas in (a) the
FoV is slightly collimated (the black areas in the image), no collimation was used in (b) nor (c).

2.4 Context Specific Collimation

We define context specific collimation as the collimation corresponding to the present de-
vices in the X-ray image and the identified phase of the workflow, together with user predefined
settings. Moreover, whereas current X-ray collimators are symmetrical (i.e. vertical/horizontal
blades can only be moved at the same time with the same distance), we propose using asymmet-
rical collimation. This can significantly reduce patient radiation dose [12], and can eliminate the
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need for the RoI to be in the centre of the FoV. This would usually require constant movement
of the table causing interruptions to the clinical workflow and is time consuming.

After the steps in Sec. 2.2 and Sec. 2.3 are carried out on the last acquired image, a
box representing the position of asymmetrical collimator blades is shown around the localized
devices as an overlay for a preview. The collimation box shows the adjusted FoV depending on
the detected phase such as:

• During phase I, the FoV should show the localized devices and a wide area of the sur-
rounding anatomy to provide enough anatomical information to aid navigation to the RoI.
The size of the surrounding area will depend on the predefined settings.

• During phase II, the FoV should be collimated to include only the localized devices, as
the delivery-catheter will mount the guidewire to reach the RoI.

• During phase III, ideally, the FoV should only show the deployed device and a small
surrounding area to assess the accuracy of deployment. The current implementation
of the method described in Sec. 2.2 can only detect and localize guiding-catheters and
guidewires. Therefore, during this phase, currently, a FoV showing the localized devices
and a small area of the surrounding anatomy is used. The size of the surrounding area
will depend on the predefined settings.

The predefined settings offer configurable context specific collimation. For example it can
include different parameters that influence the collimated area beyond the localized devices.
The parameters will depend on type of procedure, type/shape of devices, level of operator’s
experience, expected time of imaging for aggressive/low collimation, etc.

3. EXPERIMENTS

3.1 Datasets

Images from 25 clinical cases were recorded during biplane CCI procedures at Evelina
London Children’s Hospital, UK. Procedures mainly included stent placement and redilation,
balloon dilation, and valve placement. For training and evaluating our model, we selected
4500 images acquired from an anterior-posterior (AP) view ± 10◦ left/right anterior oblique
(L/RAO). Images were downsampled from 512x512 pixels to 128x128 pixels, and manually
annotated into three categories (i.e. labels) corresponding to the phases identified in Sec. 2.3.

Images from 20 cases were used to train the CNN. Generally, the majority of X-ray images
in IGIs are acquired during phase I, thus the training dataset was balanced by discarding a
significant number of the images acquired during phase I. In total, the training dataset included
3626 images. To increase the number of training images, we artificially augmented the dataset
using transformations that preserve the annotated labels. These included, randomly adjusting
the image brightness, contrast, and sharpness. This increased the size of our training dataset to
14504 images.

Images from the remaining five cases were used for evaluating the model prediction perfor-
mance. Those included 874 images.
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3.2 Architecture

The proposed model architecture is shown in Fig. 3 as represented by TensorBoard [13].
The model consists mainly of an input layer (green box), two convolutional layers (orange boxes
labelled conv1 and conv2), and two fully-connected layers (gray boxes labelled fc1 and fc2).

Figure 3: Model overview as represented by TensorBoard. The model consists of an input layer,
two convolutional layers (conv1 and conv2), two local response normalization layers (norm1
and norm 2), two max-pooling layers (pool1 and pool2), dropout regularization layer (dropout),
and two fully-connected layers (fc1 and fc2).

Input images have a size of 128x128 pixels. The first convolutional layer applies 32 filters
of size 5x5 with a stride of 1 pixel. The second convolutional layer applies 64 filters of size 5x5
with a stride of 1 pixel. The output activations of both the first and second convolutional layers
are followed by 1) rectified linear units (ReLU), 2) local response normalization layers, and 3)
max-pooling layers with a 2x2 filter and a stride of 2 pixels.

The normalized and pooled outputs of the second convolutional layer are fed to a fully
connected layer with 1024 neurons with ReLUs and dropout regularization. The second fully
connected layer contains a single node for each target phase in the model, with a softmax acti-
vation function to generate a value between 0-1 for each node to represent the probability that
the image falls into each target phase.

3.3 Training setup

To increase the computational efficiency, the model was trained using the Adam optimiza-
tion algorithm with cross entropy loss function. The learning parameters were: learning rate=0.001,
exponential decay rate for the first moment estimates=0.9, exponential decay rate for the second
moment estimates=0.999. A minibatch size of 100 examples over 2000 iterations and a dropout
rate after the first fully connected layer of 0.5 were used.

To provide the ReLUs with positive inputs which accelerates the early stages of learning
[14], the weights in each layer were initialized from a truncated zero-mean normal distribution
with a standard deviation of 0.1. The neuron biases in each layer were also initialized with the
constant 0.1 for the same reason.
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4. RESULTS

The model was trained for roughly 14 epochs through the training dataset of 14504 images,
which took about 25 mins on an NVIDIA, Quadro K2200 GPU. Figure 4 shows the evaluation
of the loss function and accuracy during training. A simple moving average smoothing using a
window size of 25% of the number of points was applied to the plots for visualization (original
curves are shown in faded colour). After 2000 iterations of training, an accuracy of 99% was
achieved. The performance of the trained model was evaluated using the labelled 874 images
from the remaining 5 cases. An evaluation accuracy of 86% was achieved.

Figure 4: The loss function (left), and the training accuracy (right) plots generated during 2000
iterations of training.

Figure 5 shows the same clinical images depicted in Fig. 2. However, an example context
specific collimation has been applied as follows:

• The algorithm briefly described in Sec. 2.2 was used to detect guiding-catheters and
guidewires with the results overlaid onto the image in yellow.

• The workflow phase was predicted for each of the images using the trained model de-
scribed in Sec. 3.2. Predicted labels were: phase I (left), phase II (middle), and phase III
(right).

• Finally, context specific collimation was applied as discussed in Sec. 2.4. The size of the
area beyond the detected devices (represented with arrows) was recorded in the predefined
settings for a CCI, stent placement, and proficient user. These were 150 mm for phase I,
and 40 mm for phase III. The area outside the collimation box was set to red to visualize
the FoV outside the predicted optimal collimation.

5. CONCLUSIONS

In this paper, we have proposed a learning-based framework to provide autonomous optimal
X-ray collimation during IGIs. In particular, we have trained a CNN model using X-ray images
acquired during CCI procedures. The trained model can predict the surgical workflow phase to
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Figure 5: Example context specific collimation for the images shown in Fig. 2. Localized
devices are shown in yellow. The area including only the localized devices is represented with
dashed line boxes. Predicted workflow phases were: phase I, phase II, and phase III, from left
to right, respectively. The predicted optimal collimation is represented with solid line boxes,
with the area outside set to red.

provide context aware collimation. This is particularly important for children with CCD because
of their high radiosensitivity, small size, and their need for multiple interventions starting from
infancy.

The framework needs not be restricted to CCI as it can be adapted to various IGI procedures.
The CNN model architecture can be adapted depending on the available dataset size and type
of visual features in the acquired X-ray images. Moreover, different methods for extracting
specific interventional tools and devices can be employed instead of the one presented in [10].
The task of workflow recognition can also be beneficial for automatic X-ray image indexing of
various IGI procedures for training, archiving, and postoperative evaluation purposes.
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