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Abstract. The C-arm CT X-ray acquisition process is a common modal-
ity in medical imaging. After image formation, anatomical structures can
be extracted via segmentation. Interactive segmentation methods bear
the advantage of a dynamically adjustable trade-off between time and
achieved segmentation quality for the object of interest w. r. t. fully auto-
mated approaches. The segmentation’s quality can be measured in terms
of the Dice coefficient with the ground truth segmentation image. A user’s
interaction traditionally consist of drawing pictorial hints on an overlay
image to the acquired image data via a graphical user interface (UI). The
quality of a segmentation utilizing a set of drawn seeds varies depending
on the location of the seed points in the image. In this paper, we (1) in-
vestigate the influence of seed point location on segmentation quality and
(2) propose an approximation framework for ideal seed placements utiliz-
ing an extension of the well established GrowCut segmentation algorithm
and (3) introduce a user interface for the utilization of the suggested seed
point locations. An extensive evaluation of the predictive power of seed
importance is conducted from hepatic lesion input images. As a result,
our approach suggests seed points with a median of 72.5 % of the ideal
seed points’ associated Dice scores, which is an increase of 8.4 % points
to sampling the seed location at random.

1 Introduction

The segmentation of hepatocellular carcinoma (HCC) in C-arm based computed
tomography (CT) images is of vital importance for the trans-catheter arterial
chemoembolization (TACE) [1] procedure. A more accurate segmentation of the
tumor increases the treatment’s efficacy while minimizing the toxicity for sur-
rounding healthy tissue during treatment with chemotherapeutic agents. Con-
trast enhanced tumors appear as inhomogeneous hyper dense or hypo dense
proliferations in the radiographic projections. A tumor represented by non-
homogeneous attenuation values considerably impedes an exact distinction be-
tween cancerous cells and their surrounding healthy hepatic tissue. Due to this
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high variability interactive segmentation methods are superior to fully automatic
segmentation approaches to obtain exact segmentations of HCC during TACE.

An interactive segmentation method may require a large amount of user
interaction. The aim of this work is to reduce the user’s assistance to a minimum
in order to increase the efficiency of the overall segmentation process. This is
realized via an automatic preselection of the seed point locations.

2 Materials and Methods

2.1 Evaluation Method for Seed Importance

Moschidis et al. [2] investigated the varying importance of sets of seed points
for interactive segmentation processes incorporating pictorial hints from a user
w. r. t. the resulting segmentation’s quality. They concluded that seeds placed
exclusively near the actual contour line of the object yield inferior segmenta-
tion results than seeds spread over the whole image space. Both alternatives
are depicted in Fig. 1. Moschidis et al. exclusively analyzed seed importance
by selecting seed locations sampled at random from each of the two provided
categories. However, a full image of seed importance D ∈ Rw,h with the same
resolution as the 2-D input image I ∈ Rw,h itself is desirable in order to analyze
shortcomings of a given segmentation technique for each input element Ix, where
x ∈ R2.

In this paper, to generate a full image of seed importance D, at each co-
ordinate x for a possible new seed point (i. e. x 6∈ X), this seed’s location is
exclusively added to the set of initial seed coordinates X 3 {x1,x2, . . . ,xn},
with n� w · h for a single segmentation. The segmentation’s Dice coefficient
Dx for image coordinate x can be interpreted as the quality of the segmentation
including seed point x. Since the segmentation’s Dice value without the current
seed point (i. e. just from the initial seeds) is the same for all non-initial seed
point locations x 6∈ X, the resulting image of Dice values can be interpreted as
an image of seed location importance for the current segmentation task. Such
an image transformation into the domain of a figure of merit for seed location

surface seeds volume seeds

a) Surface seeds b) Volume seeds

Fig. 1. Illustration of the two seeding categories (a, b) defined by Moschidis et al. [2].
Foreground seed locations depicted in orange. Background seeds depicted in green.
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importance evaluation involves w · h− n separate segmentation operations for
each input image. For an objective image of seed importance Dx∈X . Dx6∈X.

2.2 Seed Location Impact Approximation

The GrowCut [3,4] algorithm for image segmentation is based on cellular au-
tomaton theory. An automaton is defined by the tuple (GI,Q, δ). GI is the
graph of image I, where image elements are nodes ve with associated image
value ce. Nodes are connected by the Moore neighborhood system. The state
set Q consists of Qt
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t
e), where ` is the seed label and Θt
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is the strength of node e at iteration t. We propose an additional variable ht
e

as counter for accumulated label changes of e during the GrowCut iteration,
where h0

e = 0. Θ0
e is 1 for initial seed locations X, and 0 otherwise. State tran-
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e are performed utilizing δ: start from initial
seeds. Propagate labels w. r. t. local intensity features c. every node f , at each
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bounded node strengths are monotonously decreasing. The process is guaran-
teed to converge. The values of hT

x , where T is the final iteration, are used to
approximate the uncertainty of the segmentation method w. r. t. each seed loca-
tion in input image Ix. The index associated with the highest number of label
changes argmaxx h′T

x is selected as most important location for an additional
seed, since a minimization of the algorithms uncertainty during segmentation is
synonymous with a fast convergence of the interactive segmentation’s contour
line outcome towards the ground truth segmentation. h′T is hT filtered by a
Gaussian kernel with standard deviation σ. Utilizing h′T instead of hT reduces
the importance of single high values which increases the approximation quality
of the system. Using h′T , the area including the largest amount of label changes
is preferred for seed location suggestion.

2.3 Interactive Application

We utilize a UI including the described suggestion of relevant seed locations into
the workflow of interactive segmentation. As depicted in Fig. 2, the UI presents
two seed point locations to the user for interaction as proposed in [5]. They de-
cide, which of the four possible variations of foreground and background labels
to assign to these seed locations. Exactly one of the four represents the correct
labeling. In order to assist the decision process, implicit changes to the contour
line consequential to the labeling are displayed by highlighting label changing
areas on the four overlay images on the right. After selection the two seed loca-
tions are added to X. The user is presented two subsequent seed locations and
interacts with the system until they are satisfied with the segmentation result.
The process for determining the locations of the two seeds is an iterated version
of the one described in Sec. 2.2, where after the first location suggestion xs,
another seed is suggested with X = X ∪ {xs} as initial seed locations.



4 Amrehn et al.

3 Experiments

For an evaluation the full map of seed importance D using the Dice score as a
figure of merit is computed for 50 2-D lesion images acquired by a C-arm CT
scanner. Ground truth of the tumor outlines was generated manually by medical
experts. The segmentation is performed via the GrowCut method. Initial back-
ground seeds are provided along the edges of the region of interest (ROI) of fixed
100 pixels in width w and height h. At least a single initial seed is required for
each class label using GrowCut. Therefore, X consists of these background seed
locations as well as the coordinate of a single foreground seed, which is deter-
mined by the center of mass of the lesion’s binary ground truth segmentation.
σ = 5 is selected after initial experimentation. Subsequent to the generation of
D, which is outlined in Sec. 2.1, the approximation results utilizing the method
proposed in Sec. 2.2 are evaluated with D as ground truth.

4 Results

The influence of a seed’s location on the overall segmentation outcome is shown
in Fig. 4 via the ground truth image D generated as described in Sec. 2.1.
The evaluation of the seed location suggestion approach is depicted in Tab. 1.
A detailed illustration of the achieved segmentation quality per input image is
given in Fig. 3.

Fig. 2. The proposed application’s UI for the seed point approximation method consists
of four buttons to select groups of seed points generated by seed location importance
approximation. The user is asked to select the correct labels for the two chosen seed
locations. Background seeds are depicted in red, foreground seeds in blue. On the left,
the zoomed in region and seed locations are highlighted for improved user orientation.
The dotted areas illustrate the difference in each of the four possible next segmentation
outlines w. r. t. the previous iteration’s outline.
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Table 1. Ideal seeds from D which provide the maximum achievable Dice score as
reference for the seed location suggestion methods are depicted in the first column.
Results of the proposed seed location suggestion approach are displayed in the second
column. A baseline to the proposed method is provided by random sampling of seed
locations as depicted in column three.

Dice Ideal seeds from D Proposed method’s result relative Random seed

score i. e. reference for 100 % to ideal seeds’ Dice value location sampling

Mean 0.696 68.5 % (i. e. +6.2 % points) 62.3 %

Median 0.758 72.5 % (i. e. +8.4 % points) 64.1 %

Std 0.221 24.1 % (i. e. +0.4 % points) 23.7 %

5 Discussion and Outlook

As depicted in Fig. 4, Moschidis et al. [2] drastically simplified the distribution of
seed location importance by implying that seeds from one of the two categories
are inherently superior to the other. The proposed method for seed location
suggestion yields superior results in comparison to the random sampling baseline
as shown in Tab. 1 and Fig. 3. The maximum achievable Dice coefficient varies
depending on the input image (Fig. 3). Further studies might investigate which
patterns in the input image result in a low maximum Dice value in the seed
location ground truth. Related to this, the influence of image scaling might be
worth investigating to reduce the computation time during evaluation (Sec. 2.1)
as well as approximation (Sec. 2.2). Similar evaluations utilizing other seeding
segmentation approaches than GrowCut would be of interest.

Disclaimer: The concept and software presented in this paper are based on
research and are not commercially available. Due to regulatory reasons its future
availability cannot be guaranteed.
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Fig. 3. Comparison of selected seed locations’ influence on the Dice score. The points
in red mark the maximum achievable Dice score when adding just one more seed point
with coordinates x to an initial set of seed points X. The achieved Dice score by the
proposed method’s suggested seed location is depicted in green. A baseline suggestion
is illustrated in blue. Images are sorted by their maximum achievable Dice score with
one added seed point.
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Fig. 4. Selected results from seed location ground truth generation (Sec. 2.1) displayed
as an overlay on top of each gray-valued input image. The segmentation ground truth
contour line is depicted in green. The orange dot highlights the coordinate of most
important / influential seed point. Dark purple indicates initial seed point locations.


