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Abstract Purpose: Probe-based Confocal Laser Endomicroscopy (pCLE) is a subcellular
in-vivo imaging technique capable of producing images that enable diagnosis of malign
structural modifications in epithelial tissue. Images acquired with pCLE are, however,
often tainted by significant artifacts that impair diagnosis. This is especially detrimental for
automated image analysis, which is why said images are often excluded from recognition
pipelines.

Methods: We present an approach for the automatic detection of motion artifacts in
pCLE images and apply this methodology to a data set of 15 thousand images of epithelial
tissue acquired in the oral cavity and the vocal folds. The approach is based on transfer
learning from intermediate endpoints within a pre-trained Inception v3 network. For
detection within the non-rectangular pCLE images, we perform geometrically motivated
pooling within the activation maps of the network and evaluate this at different network
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depths.

Results: We achieved area under the ROC curve values of 0.92 with the proposed
method, compared to 0.80 for the best feature-based machine learning approach. Our
overall accuracy with the presented approach is 94.8%.

Conclusion: Over traditional machine learning approaches with state of the art features,
we achieved significantly improved overall performance.

Keywords deep convolutional neural networks · confocal laser endomicroscopy · motion
artifact detection

1 Introduction

Squamous cell carcinoma (SCC) accounts for over 90 percent of all cancer types in the oral
cavity and pharynx, as well as for almost all malignancies in the larynx [27]. Tobacco and
alcohol consumption are regarded as the most important risk factors for head and neck can-
cer [19,31]. While this malignancy has had a higher prevalence for men in their 6th and
7th decade, in the last two decades rising incidence rates for patients below the age of 40
years have been observed [20]. An increasing incidence of cancer of the oral cavity and
pharynx in younger patients has been attributed at least in part to the tumor-inducing prop-
erties of human papillomavirus [31,2]. Only around a third of the patients with head and
neck cancer is diagnosed in an early tumor stadium (T1, i.e. with less then 2 cm in great-
est diameter), which reduces treatment options. This, in turn, also increases the radicality
of treatment as well as the mortality [27]. One promising option for earlier diagnosis are
optical, non-invasive imaging methods.

Confocal Laser Endomicroscopy (CLE) is an imaging technique, that enables imaging
of cellular microstructure of superficial mucosal layers with a high magnification (up to
1000x) and resolution. Probe-based CLE has a fixed focal length, thus being able to inves-
tigate the area of interest in a narrow plane [6]. The pCLE used in this study (CellVizio
GastroFlex UHD probe, Mauna Kea Technologies, Paris, France) has an absorbing wave-
length of around 660nm and a penetration depth of 60 µm. Around 30 seconds before the
examination, fluorescein as the contrast agent is given intravenously to the patient. Fluores-
cein distributes within intercellular spaces without diffusing through cell membranes, thus
enabling the outline visualization and structural analysis of cellular tissue. Video sequences
are obtained and visualized on a screen in real-time.

The classification of mucosal lesions using pCLE requires training to yield good accu-
racy ratings. The interpretation of such images is subject, however, to a rather large interob-
server variability, which is why automated analysis could be advantageous for screening [1,
22,23,12]. A reliable and accurate evaluation of CLE images could potentially be used in the
future to improve the location of tumor (margins) reducing the need for unnecessary tissue
removal in areas so sensitive as the vocal cords or help reduce radicality during oncological
surgery.

It is well known, that pCLE images can suffer from severe, deteriorating artifacts (see
Fig. 1) that impede diagnosis [13,21,25]. Since artifacts are furthermore at times correlated
with physical tissue properties, they should be excluded from classification tasks in order
reduce biases [4].

Motion artifacts are a major impairment occurring during acquisition of pCLE images.
Different CLE scanners have different frame refresh rates, e.g. CellVizio scanners typically
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(a) streaky patterns (b) stretched cells (c) compressed cells (d) physiologically
stretched cells

Fig. 1 Motion artifacts occurring in pCLE images. As depicted here, motion artifacts can cover a whole
image or only parts of it. Stretched-appearing cells can however also occur physiologically (d).

Fig. 2 Inception v3 network [29] with different attachment points on levels 5 to 7. The network has been
pre-trained on ImageNet [9]. The motion detection extension is shown in detail in Fig. 3.

achieve a rate of 8 Hz while Optiscan (Optiscan Pty Ltd, Australia) scanners feature a frame
rate of up to 1.2 Hz [13]. Motion artifacts are generated, when the probe and the tissue are
moved relative to each other during sampling because of the construction principle of the
device: Combining a horizontal oscillating mirror and a vertical galvanometric mirror, a
meander-shaped sampling pattern is achieved [17]. The change in spatial position between
both components can be expressed as a motion vector. If the vertical projection of the motion
vector is negative, i.e. tissue and scanner direction coincide, the same line of tissue is po-
tentially being scanned multiple times. This leads to two patterns, as depicted in Fig. 1: For
small amplitudes of the motion vector, cells appear stretched or skewed (cf. Fig. 1(b)). For
large amplitudes, streaky patterns occur (cf. Fig. 1(a)). If the tissue and the probe move in
opposite directions, the vertical sampling is sparse, i.e. cell components appear compressed.
While for stretched or compressed cells diagnostic value might still be present, this can
clearly be neglected for strong motion artifacts leading to streaky patterns. Motion artifacts
may appear in the complete image or only in parts of the image, with the restriction that they
have no horizontal limitation, i.e. a horizontal line of the image is either artifact-tainted or
not.

This work focuses on the detection of motion-induced artifacts in CLE images, and
investigates machine learning techniques applicable for detection of image areas tainted by
said impairments. Integrated into a diagnosis toolchain, such detection mechanisms help to
interpret images and have the potential to improve the sensitivity, specificity and overall
robustness of automatic malignancy detection systems for CLE images.
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Fig. 3 Geometrical pooling for motion detection within the fully convolutional network. Here: Dimensions
for Inception level 6 with horizontal/vertical resolution of 17. After an initial 2D convolutional layer, relevant
horizontal slices are extracted and horizontal max pooling is applied. Finally, a softmax layer is applied.

2 Related Work

CLE has recently been proven to be of great value in several fields of diagnosis. In gastroen-
terology, it is clinically used successfully [21], and for some diseases even discussed as new
gold standard for diagnosis [18]. In the field of urology disease assessment, Wiesner et al.
have found that typical tumor growth patterns in urothelial bladder tissue were visible in
CLE images. They argue that the tool could improve sensitivity and specificity over white
light cytoscopy [32]. Pavlov et al. have shown the diagnostic potential for surgical guidance
in glioma detection in the human brain [26].

Computerized image recognition plays an important role in medical image diagnosis.
Convolutional neural networks (CNNs) have been successfully used for various tasks in
biomedical image processing, such as mitosis detection in histology images [7] or retinopa-
thy classification [34], to only name a few. In bright light microscopy, deep learning-based
methods are emerging to be the leading pattern recognition tool [33].

Most recently, deep learning pipelines have successfully been applied also on pCLE
images [13,4], where they outperformed state of the art approaches (e.g. textural feature-
based approaches). While the automatic detection of malignant structures in CLE images
has been investigated by several authors [15,30,4,11], previous work on preprocessing of
CLE images is limited. Bier et al. have shown, that noisy CLE images can be improved
using frequency-domain manipulations [5].

Izadyyazdanabadi et al. introduced a binary classification of CLE images into diagnos-
tically useful and non-diagnostic images, i.e. images that are either tainted by artifacts or
simply not containing visible features useful for diagnosis of the underlying tissue [13,14].
They showed, that deep learning techniques, in their case based on the well-known AlexNet
and GoogleNet architectures, were well able to perform this task.

Besides this rather coarse differentiation, our previous work showed that it is possible
to differentiate motion artifacts from regular image parts within a single image [28]. For
this, we employed transfer learning based on the trunk of a pre-trained network [28]. This
work, however, was restricted to a square-shaped image extracted from the round field of
view of pCLE images. It was also evaluated only on a limited data set of 12 patients. Our
contribution in this work is:

– We introduce the idea of pooling with a spatial constraint within the deep convolutional
network. This enables us to make use of the complete CLE image, which also allows
joint network topologies for malignancy detection or other detection tasks, that require
analysis of the overall pCLE image.

– We extend the evaluation to a database of 22 patients.
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– We present an extensive evaluation of our architectural optimization.

3 Materials

For this study, image material of N = 22 patients acquired by two independent hospitals
was used. At the Department of Oral and Maxillofacial Surgery, University Hospital Erlan-
gen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 12 patients with suspected SCC
in the oral cavity were examined. The other part of our study group (N = 10 patients) were
patients undergoing diagnosis for squamous cell carcinoma of the vocal cords. This group
was examined at the Department of Otorhinolaryngology, Head and Neck Surgery, Uni-
versity Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg. For artifact
detection, images of verified squamous cell carcinoma as well as of presumably and verified
non-cancerous tissue have been included.

At both departments, a probe-based CLE scanner (CellVizio, Mauna Kea Technolo-
gies, France) was used for image acquisition. Images acquired with both CLE devices were
between 512×512 pixels and 576×576 pixels. Acquisition frame rate was 8 Hz for both
devices.

In total, 201 sequences containing 15,018 images were used for this work. Images with
high-grade noise level were excluded, since even manual motion artifact labeling is unreli-
able in this case. Each image was manually assessed for motion artifacts, and tainted areas
were annotated and stored in a relational database.

4 Methods

For evaluation, the study group of 22 patients has been split up for a five-fold cross-
validation scenario, resulting in a group of patients used for training (N = 14 or N = 15,
depending on the fold), validation (N = 3) and testing (N = 5 or N = 4). The patients to
be included in each run were chosen randomly but equal for all methods compared in this
work. The split on a patient level ensures, that individual patient variances are covered by the
statistical evaluation. Further, we can exclude potentially strong image correlations induced
by sequences showing identical anatomical locations.

4.1 Deep Learning Pipeline

Our deep learning recognition pipeline consists of a preprocessing stage, followed by a
convolutional neural network (CNN) based on Szegedy’s Inception v3 [29] architecture,
and an attached motion detection extension (see Fig. 2 and Fig. 3). All code can be found
on the author’s web page1.

4.1.1 Preprocessing

The used CLE scanner produces monochrome images with a nominal depth of 16 bit. The
round images that are produced by the scanner, however, are not well suited for automatic
image recognition with CNNs, due to convolutions being very sensitive to the steep edges at

1 https://www5.cs.fau.de/~aubreville/ - Available after paper has been accepted
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Fig. 4 Preprocessing for pCLE images. The contents of the round field of view are effectively point-mirrored
around the outer border of the delimiting circle.

the field of view circle that yet do not comprise information. This problem can be circum-
vented by using only a rectangular square in the middle [28], or by extracting patches [15,
4,30], which is also commonly done in other domains [34]. For our application we want the
outer black border to replicate the field of view area statistically, which is why we propose
to use a circular extrapolation technique.

In log polar coordinates, the image coordinates x,y are transformed according to [3]:

ρ = log
(
x2 + y2) (1)

Φ = arctan
(y

x

)
. (2)

By concatenating a log-polar transformed image with a flipped copy of itself (along the
ρ-axis), and back-transformation into cartesian space, mirroring at the border of the field of
view is achieved (see Fig. 4).

This method is, while not preserving motion artifact information correctly outside the
circular field of view, achieving similar statistical properties for the complete image.

Finally, the resulting image is rescaled and converted to grayscale in order to match the
input dimensions of the pre-trained network of 299×299×3, and normalized to unit variance
and zero mean.

4.1.2 Geometrically Motivated Pooling from Fully Convolutional Networks

Convolutional neural networks are often seen as black boxes with hidden ingredients and
unpredictable outcomes. One key to understanding this class of networks was proposed
by Oquab et al. [24]: The basic idea of this approach is, that localization is kept within
a network by solely employing convolutional filters and pooling/striding operations (fully
convolutional network) to a certain stage, where a global max pooling operation is located
(some authors also use averaging for this). Following this, there is a final fully connected
and subsequent softmax layer, that is in a later object analysis/network segmentation phase
being attached without modification to the network before the global max pooling operation.
This way, the network is trained up to this central average pooling element to have equally
important weights in all regions, i.e. independent from the localization of the object. The
output of this analysis step then can be interpreted as a heat map, indicating which parts of
the image contributed to the class discrimination.

Special to many pCLE images, however, is the fact that a round field of view - caused by
the round optic fibre - leads to areas in the image that carry no information, but cause very
steep gradients in the image. As convolutional filters are sensitive to gradients, this leads to
a significant decrease in performance of the networks. For cases like these, we suggest to
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use masking operations within the network. The masking operation cuts position-dependent
fragments out of the original image, and subsequent operations have to be chosen in order
to no longer rely on the spatial relationship between the fragments like average pooling.

We denote the respective previous layer of a network to be U ∈ RW×H×C with its ele-
ments ui, j,c, where i, j and c are indices denoting the horizontal, vertical and channel com-
ponent, respectively.

In order to restrict the attention of the algorithm to areas that have a valid image, we
apply a masking operation FM : U → V ′ with V ′ ∈ R1×1×C the elements of the resulting
tensor v′c as:

v∗c(i, j) = δ (i, j) ·uc(i, j) (3)

with:

δ (i, j) = σ

(
r2 −

(
j− H

2

)2

−
(

i− W
2

)2
)

(4)

where r is a constraining radius of the field of view and σ(x) is the step function. The
radius r needs to be set taking into account the dimensions of the previous network layer
w.r.t. the original image. For the Inception v3 architecture, we chose r8 = 3.2, r17 = 17.65,
r35 = 15.75 for attachment in layers with width and height of 8, 17 and 35, respectively.

4.1.3 Network Architecture

Our proposed network extension for motion detection begins with a convolutional layer to
reduce the number of channels to a binary classification with one-hot encoding (2 filters
with 1x1 kernel size).

In order to be able to have a joint detection of motion artifacts on the whole image, we
formulate a masking and extraction operation FME : U → (M1,M2, . . . ,MN), U ∈ RW×H×C,
Mn ∈RAn×1×C of vertical slices from the previous network layer. The line vectors Mn consist
of An ≤W elements mc(n), where:

An =
W

∑
i

δ (i,n) (5)

mc(i,n) = δ (i,n) ·uc(i,n) (6)

To extract the motion information, a max pooling operation along the slice vector FMLP :
M → P, P ∈ RHxC is performed:

pc(n) =
Anmax
i

mc(i,n) (7)

Finally, a softmax operation is applied to retain probabilities for the two classes: motion
artifact absence and motion artifact presence:

cc(n) =
exp(pc(n))

∑C
i exp(pi(n))

(8)
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Fig. 5 Visualization of angle of maximum correlation feature.

4.1.4 Transfer Learning and Training

As previously stated, our deep learning pipeline is based upon an Inception v3 [29] network
with a custom extension for the task. The network’s weights are initialized from a network
pre-trained on ImageNet [9], and the custom extension’s weights are randomly initialized.
In order to train this custom tail faster than the original network and keep the generalization
properties of the Inception network stem high, we use a higher initial step sizes for the
ADAM optimizer [16] for the tail (5 ·10−4) than the stem (5 ·10−6).

Since the classes motion artifact and artifact free are heavily skewed, we employ un-
dersampling of the majority class: For each training mini-batch, an equal number of images
containing motion artifacts and artifact free images are chosen randomly from the data set.
Due to this random picking process, a training epoch is longer deterministically defined, but
statistically (while some duplicates may be included and some may be left out for a single
epoch).

Further, we utilize an early stopping scheme, where the network weights are stored after
each statistical epoch. We train for a minimum of 2 epochs, and afterwards stop the training
and restore the weights, if the accuracy on the complete validation set is below the respective
value for the preceding run.

4.2 Feature-based Machine Learning Pipeline

Our feature-based machine learning pipeline consists of overlapping slice extraction, feature
extraction and classification by a random forest classifier. Since our distribution is heavily
skewed, we employed undersampling of the majority class (i.e. artifact free) to reach even
distributions for the classifier training.

In order to detect motion artifacts, we employ three hand-crafted features, out of which
the following two are known from literature:

1. Histogram of oriented gradients (HOG) as described by Dalal and Triggs [8] is a fea-
ture successfully used in object detection [10]. Streaky patterns (cf. Fig. 1(a)) esentially
represent strong geometric gradients along a certain spatial direction, which motivates
the use for this work. HOG vectors are calculated for square-shaped blocks within the
current patch, resulting in a concatenated HOG descriptor of varying length (due to the
varying width in dependency of the vertical position). From this HOG descriptor matrix,
the first four central moments are calculated and used as a feature.

2. Local binary patterns (LBP) have successfully been employed in the field of CLE malig-
nancy detection [15] and in other image recognition fields. They describe the relation-
ship of a pixel with its circular neighborhood, in that its pixel value is compared to the
neighboring pixels, resulting in a binary mask. For this work, we use uniform, rotation
invariant LBPs, i.e. patterns rotated bitwise to their minimum binary representation. In
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Fig. 6 Comparative receiver operating characteristic curves for feature-based and deep learning methods.

order to derive a feature vector of constant length, a histogram operation is performed
on the LBP image as described by Jaremenko et al. [15]. We use LBP-radii of 1, 3 and
5 (8, 16 and 24 circular points, respectively).

4.2.1 Angle of Maximum Correlation Feature

Motion artifacts, especially when the motion vector coincides with the scanning direction,
induce strong correlations between one line S0 of the image and a line S1 of the image that
is sampled with an angular offset (according to the motion vector) at a fixed radius. For the
angle of maximum correlation (corrAngle) feature, lines Sk are being interpolated from the
image with a fixed radius R and varying angle θk (see Fig. 5). The coordinates (xsθ , ysθ ) of
an image line Sk with vertical offset o used for pairwise comparison with the reference line
S0 are defined as: (

xsθ (n)
ysθ (n)

)
=

(
r · sin(θk)+n
r · cos(θk)+o

)
(9)

Finally, utilizing Pearson’s ρ , the angle of maximum correlation is defined as:

ρmax = argmax
k

∑
(
S0 −S0

)(
Sk −Sk

)√
∑
(
S0 −S0

)2
√

∑
(
Sk −Sk

)2
(10)

5 Results

As expected from our previous results [28], the convolutional network clearly outperformed
all feature-based approaches with AUC values of 0.92 (see Fig. 6). The next best perform-
ing classifier was using solely the newly designed feature angle of maximum correlation
(AUC=0.82), while commonly used features like LBP and HOG were inferior. The combi-
nation of features did not increase the performance, which could indicate an overfit to the
features. Dimensionality reduction methods have not been employed in this work, as we
assumed they would likely not increase the performance to that of the deep neural network.

To compare recognition performance across different motion artifact manifestations, we
calculated the mean accuracy over all frames where said artifact was annotated (see Table 1).
The comparison shows the general superiority of the presented CNN-approach over all



10 Marc Aubreville et al.

Artifact type → stretched streaky compressed
Deep Net 0.746 0.780 0.764

corrAngle (RF) 0.676 0.701 0.749
HOG (RF) 0.551 0.609 0.610

Table 1 Mean accuracies calculated on different artifact types. Accuracy is only calculated on the respective
frames with annotated artifacts, explaining the low values compared to the overall accuracy. Note that the
low a priori probability of motion artifacts was not considered by the classifier, since undersampling of the
majority class was applied.

(a) streaky patterns (b) stretched cells (c) compressed cells (d) physiologically
stretched cells

Fig. 7 Exemplary detection of motion artifacts. Color-coded in green is the probability of motion artifacts,
as detected by the network. The manually labeled ground truth is annotated with red rectangles.
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Fig. 8 Accuracy (a) and ROC area-under-the-curve (b) values in dependency of the used inception network
endpoint. From left to right, the effective receptive field increases due to the structure of the network.

feature-based approaches. However, the difference to the next best performing feature is
especially large for stretched and streaky artifacts.

5.1 Depth-Performance Relation

For product-grade applications, complexity of a method is of almost equal importance as
performance. For convolutional networks, the complexity is linked to the depth of the net-
work. We thus evaluated the performance in dependency of the layer where the motion
detection extension was attached (cf. Fig. 2). The results (see Fig. 8) indicate, that the per-
formance increases up to the layer commonly denoted as 6b.
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6 Discussion

The used network topology (Inception v3) can be described as a fully convolutional net-
work, de-facto achieving a downscaling in its first convolutional layers (up to 5a), i.e. only
a limited receptive field is considered. The inception layers following afterwards add hor-
izontal and vertical stripe convolutions, effectively taking a more widespread context into
account. While there is still a direct relation between a coordinate within the output of a
inception block and its respective receptive field at the input, a direct 1:1 connection can not
be made. This underlines why our pre-processing is so important, as the pre-trained network
uses a very broad receptive field and steep edges in the input image around the round field of
view hinder convergence. The broadened receptive field, as induced by the inception blocks,
however adds accuracy up to a certain layer of the network (as shown in Fig. 8). This can
also be motivated by the fact that motion artifacts usually cover not only single parts of the
image, and thus a broader receptive field can help the network to increase its confidence.

Some false positives are induced by physiological variations (see Fig. 7(d)). Considering
single still images, the decision on motion artifact contents within these images is, even
for the human observer, a difficult distinction to make. For this, embedding of sequential
information into the pipeline would be required and is expected to improve results.

The high accuracy ratings of up to 0.95 should not neglect the fact that for relatively
underrepresented events as motion artifacts, this is only part of the truth. As our mean accu-
racies (Table 1) indicate, the detection on those images tainted by artifacts is only true in less
than 80% of the cases. However, it should be noted, as acceleration is not infinite, the pre-
cise starting or ending position of an artifact is hard to define for some images (see e.g. Fig.
7(b)). Visual inspection of the results indicates, that there is generally a very low subjective
false positive rate, which is also expressed by the generally high accuracies of the network
(Fig. 8(a)). It should also be pointed out, that quantization of the vertical axis, as performed
by both, the CNN and the patch extraction method, has an impact on performance, since the
annotation resolution is on a pixel level. Further, we did not distinguish between weak (as
in: only noticeable by comparing sequential images) and strong artifacts. Images tainted by
weak motion artifacts should not be problematic for expert grading, nor should they be a
significant problem for automated approaches.

In our work, we applied motion detection solely on CLE images of epithelial cells,
however CLE is being applied in a variety of other scenarios. At this time, no data set that
could be used to demonstrate applicability to those other domains was available for our
study. Yet, we are confident that the approach is indeed transferable to other pCLE images,
since the origin of the artifacts is identical.

7 Summary

Confocal Laser Endomicroscopy is an imaging method that has been proven to be highly
suitable for the detection of squamous cell carcinoma in the head and neck region.

In this work, we introduced a new method for motion artifact detection in pCLE images,
a common deterioration induced by doctor’s hand or patient movement. This new approach,
which is based on masking and pooling from within a pre-trained network architecture,
enables detection of said artifacts on the complete image using a deep learning pipeline.

Over previous approaches with state-of-the-art features, the method shows clearly su-
perior properties, yielding better detection accuracies while taking into account almost the
complete image. This was demonstrated on two data sets of epithelial tissue, both of which
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include images of presumably physiological and malign tissue (in total: 15,018 single im-
ages). Our five-fold cross-validation on patient level found accuracies of 94.8% with area
under the ROC curve values of 0.92.

This, from our point of view, represents a key step towards a fully automatic classifica-
tion and analysis of pCLE images. We expect further insights about robustness and clinical
applicability with the acquisition of more image sequences, which is part of our ongoing
research.
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18. Macé, V., Ahluwalia, A., Coron, E., Le Rhun, M., Boureille, A., Bossard, C., Mosnier, J.F., Matysiak-
Budnik, T., Tarnawski, A.S.: Confocal laser endomicroscopy: A new gold standard for the assessment
of mucosal healing in ulcerative colitis. Journal of Gastroenterology and Hepatology 30, 85–92 (2015).
DOI 10.1111/jgh.12748

19. Maier, H., Dietz, A., Gewelke, U., Heller, W., Weidauer, H.: Tobacco and alcohol and the risk of head
and neck cancer. The Clinical Investigator 70(3-4), 320–327 (1992). DOI 10.1007/BF00184668

20. Nachalon, Y., Alkan, U., Shvero, J., Yaniv, D., Shkedy, Y., Limon, D., Popovtzer, A.: Assessment of
laryngeal cancer in patients younger than 40 years. The Laryngoscope (2017). DOI 10.1002/lary.26951

21. Neumann, H., Langner, C., Neurath, M.F., Vieth, M.: Confocal Laser Endomicroscopy for Diagnosis of
Barrett’s Esophagus. Frontiers in Oncology 2, 42 (2012). DOI 10.3389/fonc.2012.00042

22. Neumann, H., Vieth, M., Atreya, R., Neurath, M.F., Mudter, J.: Prospective evaluation of the learning
curve of confocal laser endomicroscopy in patients with IBD. Histology and histopathology 26(7), 867–
872 (2011)

23. Oetter, N., Knipfer, C., Rohde, M., Wilmowsky, C., Maier, A., Brunner, K., Adler, W., Neukam, F.W.,
Neumann, H., Stelzle, F.: Development and validation of a classification and scoring system for the diag-
nosis of oral squamous cell carcinomas through confocal laser endomicroscopy. Journal of Translational
Medicine 14(1), 1–11 (2016). DOI 10.1186/s12967-016-0919-4

24. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Is object localization for free? - Weakly-supervised learning
with convolutional neural networks. In: Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pp. 685–694. IEEE (2015). DOI 10.1109/CVPR.2015.7298668

25. Parikh, N.D., Gibson, J., Nagar, A., Ahmed, A.A., Aslanian, H.R.: Confocal laser endomicroscopy fea-
tures of sessile serrated adenomas/polyps. United European Gastroenterology Journal 4(4), 599–603
(2016). DOI 10.1177/2050640615621819

26. Pavlov, Vladislav, Meyronet, David, Meyer-Bisch, Vincent, Armoiry, Xavier, Pikul, Brian, Dumot,
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