

Deep Neural Networks for Noise Reduction under Hearing Aid Side Conditions

M. Aubreville^{1,2}, K. Ehrensperger¹, T. Rosenkranz², B. Graf², H. Puder², A. Maier¹

- ¹ Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- ² Sivantos GmbH, Erlangen, Germany

IHCON 2018, Lake Tahoe, CA, United States

Attention

[google trends: "hearing aids" vs. "deep learning"]

What is deep learning anyway?

 $U(X) = b + x_1 \cdot w_1 + x_2 \cdot w_2 + \ldots + x_N \cdot w_N$ Linear Regression

Nonlinearity

What is deep learning anyway?

What is deep learning anyway?

- Not very smart, but very effective.
- Contents of the black box may seem unclear.
- Problem for medical devices.

Learning known Operators [MS17]

- We can exchange a single operator in the chain by a neural network.
- Restrictions to the structure of output and network help constrain the problem to be solved.

[MS17]: Maier et al., 2017: arxiv:1712.00374

Hearing Aid Side-Conditions

Limited processing power

Robustness required in any environment

Group delay > 10 ms objectionable to hearing aid wearers [AT00]

[AT00]: J. Agnew and J. M. Thornton, JAAA (2000) 11:330-360

State of the (deep) art

Hearing Aid Filterbank

[BS08]: R. Bäuml and W. Sörgel, EUSIPCO 2008

- State-of-the-art hearing aid filter bank
- 48 channels, uniform
- group delay: ~ 6 ms

Architecture

- Input: Log-levels, normalization on window scope
- DNN with 3 hidden layers, 2048 nodes each.

Temporal context

- Temporal context should be 200-300ms, due to structure of speech (~ 4 Hz syllable rate). [HS77]
- Symmetrical context leads to high latency
- Proposal: Asymmetrical context with rich past knowledge

[HS77]: Houtgast and Steeneken, JASA 1985:77(3)

Our training database

- 49 real-world noise recordings
 - recorded with hearing aid microphones
 - Mixed to achieve multi-noise conditions (Kumar et al.)

- 260 clean speech signals (EUROM, german sentences)
- Train/test split on source signal level.

Results - Conditions

[HS05]: E. Hänsler, G. Schmidt, Wiley&Sons, 2005

Marc Aubreville et al. IHCON 2018 2018-08-18

Subjective Results

(MUSHRA, N=20)

- DNN as superior to recursive minimum tracking baseline
- Benefits especially for nonstationary signals.
- Still imperfect quality for low SNRs (phase distortion)

Deep Learning is too complex for hearing aids?

- DNNs are not dependent on floating point units.
- Even binary operations might be sufficient. (XNOR-Net [RO16])
- Potential for revival of analog computing [LY15]

[RO16] M. Rastegari et al., 2016, arxiv: 1603.05279 [LY15] Y. Lu et al, 2015, IEEE J. Solid State Circuits 50(1)

Summary: Hearing Aid Side-Conditions

- Limited processing power
 - Likely not unsolvable in the future.
- Robustness required in any environment
 - Promising, needs more evaluation.
- Group delay > 10 ms objectionable to hearing aid wearers [AT00]
 - Total group delay = 8 ms.

[AT00]: J. Agnew and J. M. Thornton, JAAA (2000) 11:330-360

Thank you.

For more details:
IWAENC 2018 paper
https://arxiv.org/abs/1805.01198

Deep Neural Networks for Noise Reduction under Hearing Aid Side Conditions

M. Aubreville^{1,2}, K. Ehrensperger¹, T. Rosenkranz², B. Graf², H. Puder², A. Maier¹

- ¹ Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- ² Sivantos GmbH, Erlangen, Germany

IHCON 2018, Lake Tahoe, CA, United States

Normalization

Normalization across frequency:

$$X_{\text{norm}}(k,f) = X(k,f) - \frac{1}{\tau_1 + 1 + \tau_2} \sum_{k=-\tau_1}^{\tau_2} X(k,f)$$

X(k, f): Filterbank levels in log-scale

- Completely level independent
- Level information is fed as side-information to DNN

How much context is needed?

Context Size Influence on Gain Prediction

Example: Fricative

