

FACULTY OF ENGINEERING

An Anthropomorphic Deformable Phantom for Brain Shift Simulation

Siming Bayer¹, Adrian Wydra², Zhong Xia¹, Nishant Ravikumar¹, Maddalena Strumia³, Roman Schaffert¹, Martin Ostermeier³, Rebecca Fahrig³, and Andreas Maier¹

¹Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany

²*True Phantom Solutions Inc. Windsor, Ontario, Canada*

³Siemens Healthcare GmbH, Forchheim, Germany

Introduction

- Intraoperative *brain shift* affects the accuracy of neurosurgical guidance significantly
- Conventional image-guided navigation systems do not compensate for soft tissue deformation
- C-Arm computed tomography (CT) is not well studied for *brain shift* compensation [1]

Brain shift simulation

Data acquisition

- Cone beam CT (CBCT) acquisition (Fig. 4):
 10s 3D Head DCT protocol
 - (Siemens Artis Zee)
 - fill the vasculature with iodine-based contrast agent

- Due to the lack of clinical data, a physical phantom is necessary
- Design and manufacture:
 - ✓ an anthropomorphic deformable brain phantom
 - visible both for MRI and contrast enhanced C-Arm CT
- Simulate the brain shift phenomenon
- > Estimate the magnitude of the simulate brain shift

Phantom design and material properties

Phantom design

1) Skull

- made out of a unique ceramic composite bone material [2]
- average shape of the skull of an adult
- an opening with a **removable plug**
- 2) Brain parenchyma
 - made out of an ultra soft polyurethane base material
 - embedded vasculature (Fig. 1b), ventricles (Fig. 1c) and an

- 2) MR acquisition (Fig. 5):
 - 3D flash sag isotropic sequence (Siemens Magnetom Aera)
 - TR = 10ms, TE = 3.25ms

Figure 2: Manufactured phantom

Brain shift estimation

- Perform mono-modal non-rigid registration for CBCT and MRI
- Use symmetric image normalization (SyN) [3] within the **Advanced Normalization Tools (ANTs)**
- Max. displacement are 28.1mm (CBCT) and 29.5mm (MRI)
- Results correlates with the clinical observations [4, 5]

Figure 4: Examples of CBCT (a)-(b) phantom acquisitions. (a) shows the acquisition with maximum deflated tumor, while (b) presents the maximum inflated tumor, (c) shows the estimated displacement field.

inflatable tumor

Figure 1: Front view of the complete design of the phantom (a), the geometry of the vessel (b), and the phantom skull with parenchyma (c).

Material properties

Components	Density [g/cm³]	Stiffness [kPa]	T ₂ [ms]	Hounsfield Unit
Skull	2.31	N.A.	N.A.	1500/600*
Parenchyma	0.99	100	70	-10015
Skin	1.02	740	45	-13040

Figure 5: Examples of MR (a)-(b) phantom acquisitions. (a) shows the acquisition with maximum deflated tumor, while (b) presents the maximum inflated tumor, (c) shows the estimated displacement field.

Conclusion

- 1) Designed and manufactured an anthropomorphic deformable brain phantom:
 - use tissue mimicing materials
 - consists of prominent anatomical structures of brain

2) Simulated brain shift phenomenon on CBCT and MR:

estimated the magnitude of the induced deformation

Table 1: Material properties of the phantom. T₂ values are measured with a 3T MRI scanner by the manufacturer.

* The average HU for the cortical bone and the diploe is 1500 and 600, respectively.

results correlate with the clinical findings

References

[1] Bayer S. et al. IJBI. 2017 [2] Wydra A. and Maev B.A. Phys Med Biol. 2013 [3] Avants B. et al. Med Image Anal. 2008 [4] Nimsky C. et al. Neurosurgery. 2000 [5] Gerard I. J. et al. Med Image Anal. 2017

Contact

Siming Bayer Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany

siming.bayer@fau.de ***** +49 9131 85 27826

Acknowledgements

Disclaimer: The methods and information presented in this work are based on research and are not commercially available

