
Brain shift compensation framework : 

• A feature based probabilistic registration framework 

• Use 3D Digital Subtraction Angiography and 3D Cone Beam CT 
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• Intraoperative brain shift affects the accuracy of neurosurgical 

guidance significantly 

• Conventional image-guided navigation systems do not 

compensate for soft tissue deformation 

• C-Arm computed tomography (CT) is not well studied for brain 

shift compensation [1] 

 

 Investigate the use of C-arm CT for brain shift compensation  

 Propose a vessel centerlines based registration framework 

 Perform phantom and first clinical study 

 

 

Introduction Results and Discussion 

• Investigated the use of C-Arm CT for intraoperative brain shift 

compensation 

• Proposed a vessel centerline based registration framework  

1) represents centerlines as hybrid point sets 

2) inherently robust against outliers 

3) increases the registration accuracy significantly 

• Clinical data evaluated for the first time 

Conclusion 
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Material and Methods 

Figure 2: Pipeline of  brain shift compensation framework using a hybrid mixture model  

Hybrid mixture model (HdMM):  

 

• Consider vessel centerlines as 6D hybrid points 

 

 

 

 

 

 

 

 

 

• Use Tikonov regularization [2] to constrain the displacement 

 

 

 

 

 

 

 

 

 

 

    

• HdMM/HdMM+ vs. coherent point drift (CPD) [2] with phantom 

and clinical data 

• Fixed hyper-parameters for fair comparison 

 

Figure 3: Result of quantitative evaluation following registration phantom and clinical data. 

 

 

    

Figure 4: Overlay of 3D cerebral vasculature segmented from the registered preoperative 

(yellow) DSA image and the target intraoperative image (green).  
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Figure 1: Intraoperative brain shift acquired with C-arm CT scanner in collaborating clinic.  
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HdMM:  

• Reduces initial average MSD 

 From 5.42 ± 1.07mm to 

0.5±0.05mm (phantom) 

 From 6.06 ± 0.68mm to 

1.15±0.36mm(clinical) 

• Outperforms CPD consistently 

(see Figure 3) 

• Preserves fine structural details 

(see Figure 4) 

• Further improvement achieved 

with HdMM+ 

 

Disclaimer: The methods and information presented in this work are based on research and are 

not commercially available 
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