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Abstract. Brain deformation (or brain shift) during neurosurgical pro-
cedures such as tumor resection has a significant impact on the accuracy
of neuronavigation systems. Compensating for this deformation during
surgery is essential for effective guidance. In this paper, we propose a
method for brain shift compensation based on registration of vessel cen-
terlines derived from preoperative C-Arm cone beam CT (CBCT) im-
ages, to intraoperative ones. A hybrid mixture model (HdMM)-based
non-rigid registration approach was formulated wherein, Student’s t and
Watson distributions were combined to model positions and centerline
orientations of cerebral vasculature, respectively. Following registration
of the preoperative vessel centerlines to its intraoperative counterparts,
B-spline interpolation was used to generate a dense deformation field and
warp the preoperative image to each intraoperative image acquired. Reg-
istration accuracy was evaluated using both synthetic and clinical data.
The former comprised CBCT images, acquired using a deformable an-
thropomorphic brain phantom. The latter meanwhile, consisted of four
3D digital subtraction angiography (DSA) images of one patient, ac-
quired before, during and after surgical tumor resection. HdMM consis-
tently outperformed a state-of-the-art point matching method, coherent
point drift (CPD), resulting in significantly lower registration errors. For
clinical data, the registration error was reduced from 3.73mm using CPD
to 1.55mm using the proposed method.

1 Introduction

Brain shift compensation is imperative during neurosurgical procedures such as
tumor resection as the resulting deformation of brain parenchyma significantly
affects the efficacy of preoperative plans, central to surgical guidance. Conven-
tional image-guided navigation systems (IGNS) model the skull and its contents
as rigid objects and do not compensate for soft tissue deformation induced dur-
ing surgery. Consequently, non-rigid registration is essential to update surgical
plans, and ensure precision during image-guided neurosurgery.



C-arm computed tomography (CT) is a state-of-the-art imaging system, ca-
pable of acquiring high resolution and high contrast 3D images of cerebral vascu-
lature in real time. However, in contrast to other intraoperative imaging systems
such as magnetic resonance (MR), ultrasound (US), laser range scanners and
stereo vision cameras, few studies have investigated the use of C-arm CT in an
interventional setting for brain shift compensation [1]. The advantages of C-arm
interventional imaging systems are, they do not require special surgical tools as
with MR and provide high resolution images (unlike MR and US). Additionally,
they enable recovery of soft tissue deformation within the brain, rather than just
the external surface (as with laser range imaging and stereo vision cameras). The
downsides are a slight increase in X-ray and contrast agent dose.

Recently, Smit-Ockeleon et al. [5] employed B-spline based elastic image regis-
tration to compensate for brain shift, using pre- and intraoperative CBCT images
(although, not during surgical tumor resection). Coherent point drift (CPD) [8],
a state-of-the-art non-rigid point set registration approach was used in [3] and [7],
for brain shift compensation. Both studies used thin plate splines (TPS)-based
interpolation to warp the preoperative image to its intraoperative counterparts,
based on the initial sparse displacement field estimated using CPD. Although
[3] demonstrated the superiority of CPD compared to conventional point match-
ing approaches such as iterative closest point (ICP), a fundamental drawback
of the former in an interventional setting is that it lacks automatic robustness
to outliers. To overcome this limitation, Ravikumar et al. [10] proposed a prob-
abilistic point set registration approach based on Student’s t-distributions and
Von-Mises-Fisher distributions for group-wise shape registration.

In this paper we propose a vessel centerlines-based registration framework
for intraoperative brain shift compensation at different stages of neurosurgery,
namely, at dura-opening, during tumor resection, and following tumor removal.
The main contributions of our work are: (1) a feature based registration frame-
work that enables the use of 3D digital subtraction angiography (DSA) images
and 3D CBCT acquired using C-arm CT, for brain shift compensation; (2) the
formulation of a probabilistic non-rigid registration approach, using a hybrid
mixture model (HdMM) that combines Student’s t-distributions (S, for auto-
matic robustness to outliers) to model spatial positions, and Watson distribu-
tions (W) to model the orientation of vessel centerlines; and (3) to the best
of our knowledge, this is the first paper exploring the use of pre-, intra-, and
post-surgery 3D DSA for brain shift compensation in a real patient.

2 Material and Methods

This study investigates the use of C-Arm CT, which captures 3D cerebral vascu-
lature, as pre- and intraoperative image modalities for brain shift compensation
during surgical tumor resection. Vessel centerlines were extracted from pre- and
intraoperative images automatically using Frangi’s vesselness filter [4] and a
homotopic thinning algorithm proposed in [6]. The registration pipeline we fol-



lowed is: 1) rigid and non-rigid registration, 2) an optional resection detection
and registration refinement step, and 3) B-Spline image warping.

Hybrid mixture model-based registration: The extracted centerlines
are represented as 6D hybrid point sets, comprising spatial positions and their
associated undirected unit vectors representing the local orientation of vessels.
Preoperative centerlines are registered to their intraoperative counterparts us-
ing a pair-wise, hybrid mixture model-based rigid and non-rigid registration ap-
proach. Rigid registration is used to initialize the subsequent non-rigid step, in
all experiments conducted. Recently, [10] proposed a similar approach for group-
wise shape registration. Here, hybrid shape representations which combined spa-
tial positions and their associated (consistently oriented) surface normal vectors
are employed to improve registration accuracy for complex geometries. However,
their approach is designed to model directional data using Von-Mises-Fisher
(vmF) distributions and correspondingly required the surface normal vectors to
be consistently oriented. vmF distributions lack antipodal symmetry and con-
sequently are not suitable to model axial data such as vessel centerlines. We
propose a variant of this registration approach that incorporates Watson distri-
butions (whose probability density is the same in either direction along its mean
axis) in place of vmFs, to address this limitation.

Registration of the preoperative (Source) and intraoperative (Target) ves-
sel centerlines is formulated as a probability density estimation problem. Hybrid
points defining the Source are regarded as the centroids of a HdMM, which is
fit to those defining the Target, regarded as its data points. This is achieved
by maximizing the log-likelihood (llh) function, using expectation-maximization
(EM). The desired rigid and non-rigid transformations are estimated during
the maximization (M)-step of the algorithm. By assuming the spatial position
(xi) and centerline orientation (ni) components of each hybrid point in the
Target set to be conditionally independent, their joint probability density func-
tion (PDF) can be approximated as a product of the individual conditional
densities. The PDF of an undirected 3D unit vector ni sampled from the jth
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Assuming all i = 1...N hybrid points in the Target (T) to be independent and
identically distributed, and as data points generated by an j = 1...M -component
mixture model (defining the Source), the llh is expressed as shown in eq. 1a.
Here, µµµj and πj represent the spatial position and mixture coefficient of the
jth component in the HdMM. In the first stage, rigid transformation (T ) and



model parameters associated with the Student’s t-distributions in the mixture
(Θp = {νj , σ2}), namely, translation, rotation, scaling, and degrees of freedom
(νj), variance (σ2), respectively, are updated in the M-step similarly to [9]. In
the second stage, the desired non-rigid transformation (T ) is expressed as a
linear combination of radial basis functions, and the associated parameters are
estimated as described in [8]. Tikhonov regularization is employed to ensure
that the estimated deformation field is smooth. The resulting cost function that
is maximized to estimate the desired non-rigid transformation is expressed as
shown in eq. 1b. Here, Q represents the expected llh, t represents the current
EM-iteration, P ? represents the corrected posterior probabilities estimated in
the expectation (E)-step (as described in [9]), v is the displacement function
mapping the Source to the Target, λ controls the smoothness enforced on the
deformation field and W and G represent the weights associated with the radial
basis functions and the Gaussian kernel, respectively. During both rigid and non-
rigid registration, parameters associated with the Watson distributions (Θd =
{κj}) are estimated as described in [2].

Resection detection and registration refinement: While the Student’s
t-distributions in the proposed framework provide automatic robustness to out-
liers, it is difficult to cope with large amounts of missing data in the Target

relative to the Source, as is the case during and following tumor resection. Con-
sequently, we formulated a mechanism for refining the correspondences, in order
to accommodate for the missing data during registration. This was achieved by
detecting and excluding points in the Source that lie within the resected region
in the Target, following both rigid and non-rigid registration. The refined corre-
spondences in the Source were subsequently non-rigidly registered (henceforth
referred to as HdMM+) to the Target, to accommodate for the missing data
and improve the overall registration accuracy. Points within the resected region
were identified by first building a 2D feature space for each point in the Source.
The selected features comprised: the minimum euclidean distance between each
Source point and the points in the Target; and the number of points in the
Target which had been assigned posterior probabilities greater than 1e−5, for
each point in the Source. Subsequently, PCA was used to reduce the dimen-
sionality of this feature space and extract the first principal component. Finally,
automatic histogram clipping using Otsu-thresholding was performed on the first
principal component, to identify and exclude points within the resected region.

3 Experiments and Results

Data acquisition: A deformable anthropomorphic brain phantom Fig. 1, (man-
ufactured by True Phantom Solutions Inc., Windsor, Canada) is used to acquire
CBCT images and conduct synthetic experiments. It comprises multiple struc-
tures mimicking real anatomy, namely, skin, skull, brain parenchyma, ventricular
system, cerebral vasculature and an inflatable tumor. A removable plug is em-
bedded in the skull to emulate a craniotomy. Brain tissue and blood vessels
are made from polyurethane, a soft tissue simulant. In order to simulate mul-



tiple stages of tumor resection surgery, 40ml distilled water was injected into
the inflatable tumor initially. The tumor was subsequently deflated to 25ml,
15ml, 5ml and 0ml. At each stage, a 10s 3D CBCT image was acquired using
the Ultravist 370 contrast agent to enhance the blood vessels. The acquisitions
were reconstructed on a 512x512x398 grid at a voxel resolution of 0.48mm3.
The experimental setup and a typical acquisition of the phantom are shown in
Fig. 1. A detailed description and visualization of the phantom is included in
the supplementary material.

The clinical data used in this study was provided by our clinical partner. It
comprised 3D DSA images acquired during tumor resection surgery of a glioma
patient. The images were acquired preoperatively, following craniotomy, during
resection, and postoperatively, to monitor blood flow within the brain during
and after surgery. The surgery was performed in a hybrid operating room with
Siemens Artis zeego system (Forchheim, Germany) and as with the phantom ex-
periments, the acquisitions were reconstructed on a 512x512x398 grid with voxel
resolution of 0.48mm3. We evaluated the proposed approach using the phantom

Fig. 1. The CAD model of the phantom, the experiment setting and an example slice
of CBCT acquisition of the phantom are shown from left to right.

and clinical data sets. The former involved four independent registration exper-
iments. The image acquired with the tumor in its deflated state (with 0ml of
water) was considered to be the Source, while, those acquired at each inflated
state of the tumor were considered as Targets. The latter involved three inde-
pendent experiments, namely, registration of the preoperative image to images
acquired following craniotomy, during tumor resection, and postoperatively.

Results: We compared the performance of our registration method with
CPD, using the phantom and clinical data sets. For fair comparison, we fixed the
parameters associated with the non-rigid transformation, namely, the smoothing
factor associated with the Tikhonov regularization and the width of the Gaus-
sian kernel, to 1, for both HdMM and CPD. Following preliminary investigations,
we identified 0.5 to be a suitable value for the uniform distribution component
weight in CPD, which remained fixed for all experiments. The maximum number
of EM-iterations was set to 100 for all experiments, using both methods. The
mean surface distance metric (MSD) is used to evaluate registration accuracy
in all experiments conducted. As the phantom data set lacks any tumor resec-



tion/missing data, these samples are registered using just CPD and HdMM. In
contrast, the clinical data set is registered using CPD, HdMM and HdMM+, to
evaluate the gain in registration accuracy provided by the correspondence refine-
ment step (in HdMM+), when dealing with missing data. We assess registration
accuracy for both data sets in two ways: (1) by evaluating the MSD between the
registered Source and Target sets (henceforth referred to as Error1); and (2) by
evaluating the MSD between the vessel centerlines, extracted from the warped
preoperative image, and each corresponding intraoperative image (henceforth
referred to as Error2). Additionally, for the clinical data set, in order to evalu-
ate the degree of overlap between the cerebral vasculature following registration
of the preoperative to each intraoperative image, we also compute the Dice and
Jaccard scores between their respective vessel segmentations.

The average MSD errors, Dice, and Jaccard scores for all experiments are
summarized by the box plots depicted in Fig. 2. These plots indicate that, HdMM
consistently outperforms CPD in all experiments conducted, and in terms of
all measures used to assess registration accuracy. The initial average MSD is
5.42 ± 1.07mm and 6.06 ± 0.68mm for phantom and clinical data, respectively.
Applying the registration pipeline, the average Error1 for the phantom data
set (averaged across all four registration experiments), is 0.89 ± 0.36mm and
0.50±0.05mm, using CPD and HdMM respectively. While, the average Error2 is
1.88±0.52mm and 1.54±0.15mm for CPD and HdMM, respectively. For the clin-
ical data set, the average Error1 is 2.44±0.28mm and 1.15±0.36mm and average
Error2 is 3.72 ± 0.46mm and 2.24 ± 0.55m, for CPD and HdMM, respectively.
Further improvement in registration accuracy is achieved using HdMM+, which
achieved average Error1 and Error2 of 0.78± 0.12mm and 1.55± 0.22mm, re-
spectively. The mean Dice and Jaccard scores (refer to Fig.2(c)) evaluated using

Fig. 2. MSD errors evaluated following registration of the phantom and clinical data
sets are presented in (a) and (b) respectively. Average Dice and Jaccard scores evalu-
ating the overlap between vessels segmented in the registered preoperative and corre-
sponding intraoperative images are depicted in (c).

vessels segmented from the warped preoperative image and each corresponding
intraoperative image indicate that, similar to the MSD errors, HdMM+ outper-



Fig. 3. Overlay of 3D cerebral vasculature segmented from the registered preoperative
(yellow) DSA image and the target intraoperative image (green). Using CPD (a) and
HdMM (b) prior to resection, using CPD (c) and HdMM (d) post resection.

formed both CPD and HdMM. To qualitatively assess the registration accuracy
of our approach, vessels extracted from the warped preoperative image, are over-
laid on its intraoperative counterpart (acquired following craniotomoy and tumor
resection), as shown in Fig. 3. Fig. 3(a) and (c) depicts the registration result of
CPD, while, Fig. 3(b) and (d) depicts that of HdMM. These images summarize
the superior registration accuracy of the proposed approach, relative to CPD.

4 Discussion and Conclusion

The presented results (refer to Fig. 2 - 3) for the phantom and clinical data ex-
periments indicate that the proposed approach is able to preserve fine structural
details, and consistently outperforms CPD in terms of registration accuracy.
This is attributed to the higher discriminative capacity afforded by the hybrid
representation of vessel centerlines used by HdMM, enabling it to establish cor-
respondences with greater anatomical validity than CPD. Complex structures
such as vessel bifurcations require more descriptive features for accurate regis-
tration, than afforded by spatial positions alone. Consequently, a registration
framework such as HdMM that jointly models the PDF of spatial positions and
centerline orientations, is better equipped for registering complex geometries
such as cerebral vasculature than point matching methods that rely on spatial
positions alone (such as CPD).

An additional advantage of the proposed approach is its inherent and auto-
matic robustness to outliers that may be present in the data. This is attributed
to the heavy-tailed nature of the constituent Student’s t-distributions in the
HdMM, and the estimation of different values for the degrees of freedom as-
sociated with each component in the HdMM. This is a significant advantage
over CPD, as the latter requires manual tuning of a weight associated with the
uniform distribution component in the mixture model, which regulates its ro-
bustness to outliers during registration. These advantages and the significant



improvement in registration accuracy afforded by HdMM indicate that it is
well-suited to applications involving registration of vascular structures. This
is encouraging for its future use in intraoperative guidance applications, and
specifically, for vessel-guided brain shift compensation.

Evaluation on a single clinical data set is a limitation of the current study.
However, the proposed work-flow is not standard clinical practice, as there is
a limited number of hybrid installations, equipped with CBCT capable devices
in upright sitting position. Furthermore, the protocol induces a slight amount
of additional X-ray and contrast agent dose which is typically not a problem
for the patient population under consideration. However, prior to this study,
there was no indication whether vessel-based brain shift compensation can be
performed successfully at all, given 3D DSA images. Thus, getting a single data
set posed a significant challenge. The potential of the proposed workflow to
ensure high precision in surgical guidance, in the vicinity of cerebral vasculature,
is particularly compelling for neurosurgery.

Disclaimer: The methods and information presented in this work are based
on research and are not commercially available.
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