

Preliminary study investigating brain shift compensation using 3D CBCT cerebral vascular images

Siming Bayer¹, Roman Schaffert¹, Nishant Ravikumar¹, Andreas Maier¹, Xiaoguang Tong³, Hu Wang³, Martin Ostermeier², Rebecca Fahrig²

¹ Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

² Siemens Healthcare GmbH, Forchheim, Germany

³Tianjin Huanhu Hospital, Tianjin, China

Introduction

- **Brain shift** phenomenon in a neurosurgical procedure:
 - Time dependent elastic deformation (see Fig. 1).

- Image guided navigation systems:
 - Assume rigid behavior of the head and its content,
 - Are not able to recover elastic deformation.
 - => Brain shift affects the accuracy of the neurosurgery.

Materials and Methods

- The overall brain shift compensation pipeline includes the following steps:
 - Feature extraction,
 - Point matching (coherent point drift vs. robust point matching),
 - Displacement field interpolation (thin plate spline vs. B-spline).
- Feature extraction:
 - Use Frangi's vesselness filter [1] to enhance the vasculature.
 - Extract centerline by using an octree data structure [2].
 - Detect bifurcation points with a 3x3x3 window around each point of the centerline.
- Point matching:
 - Coherent point drift (CPD) [3]:
 - Target point set represents the data points,
 - Source point set represents the GMM centroids,

Figure 1: Cone beam CT images acquired during a tumor resection surgery. (a) Preoperative image. (b) After dura opening, a small deformation is visible. (c) After resection, the surrounding tissue undergoes a larger deformation.

	Before	CPD- B-Spline	CPD- TPS	RPM- B-Spline	RPM- TPS
Full brain	0.92	0.94	0.94	0.95	0.93
ROI	0.89	0.93	0.92	0.94	0.90
Full brain (+ Outlier)	0.92	0.85	0.66	0.85	0.65

- Maximize the posterior probability.
- Robust point matching (RPM) [4]:
 - Soft correspondence for fuzzy assignment,
 - Least square optimization of an energy function.
- Displacement field interpolation
 - Thin plate spline (TPS) [5]: globally controlled, belongs to the family of Radial Base Functions.
 - B-spline [6]: locally controlled, only use the information in the neighborhood.

Results and Discussion

- Experiment:
 - With synthetic digital phantom data [7].
 - Use relative overlap metric for the evaluation.
 - Calculated both for the entire brain parenchyma and ROI.
 - Additionally, add 20% outliers to evaluate the robustness.
- Results (see Tab. 1 and Fig. 2)
 - Outliers affect the accuracy greatly.
 - B-spline interpolation outperforms TPS.

ROI		0 00	$\cap \circ \gamma$	0 0 2	$\cap \circ \gamma$
(+ Outlier)	0.89	0.00	0.02	0.92	0.82

Table. 1.: Relative overlap rate of the entire brain parenchyma and region of interest (ROI) after using different point matching and interpolation techniques.

Figure 2.: An example axial slice with displacement field overlay. (a) and (b) are the source and target images, respectively. (c) – (f) are registration result of different methods.

 Result of CPD depends on the choice of parameter controlling outlier proportion.

Conclusions

- A feature-based registration pipeline for brain shift compensation with 3D CBCT cerebral vasculature is proposed.
- We compared different point matching methods and interpolation techniques on digital phantom data.

Contact

siming.bayer@fau.de
 https://www5.cs.fau.de/en/our-team/bayer-siming

References

Frangi et al.: Multiscale vessel enhancement filtering. MICCAI (1998)
 Lee et al.: Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP (1994)
 Myronenko et al.: Point set registration: coherent point drift. IEEE PAMI (2010)
 Rangaranjan et al.: A new point matching algorithm for non-rigid registration. CVIU (2003)
 Bookstein et al.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE PAMI (1989)

[6] Rueckert et al.: Non-rigid registration using free-form deformations. IEEE TMI (1999)
[7] Bayer et al.: Generation of synthetic image data for the evaluation of brain shift compensation methods. IGIC (2017)

Acknowledgment: Note that the concepts and information presented in this paper are based on research, and they are not commercially available.

Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg

http://www5.cs.fau.de