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Abstract. During a neurosurgical procedure, the exposed brain under-
goes an elastic deformation caused by numerous factors. This deforma-
tion, also known as brain shift, greatly affects the accuracy of neuronavi-
gation systems. Non-rigid registration methods based on point matching
algorithms are frequently used to compensate for intraoperative brain
shift, especially when anatomical structures such as cerebral vascular tree
are available. In this work, we introduce a pipeline to compensate for the
volumetric brain deformation with Cone Beam CT (CBCT) image data.
Point matching algorithms are combined with Spline-based transforms
for this purpose. The initial result of different combination is evaluated
with synthetical image data.

1 Introduction

Image guided navigation systems (IGNS) have become an essential part of neuro-
surgical procedures due to their ability to maximize the extent of tumor resection
and minimize surgical trauma. However, the accuracy of image guided neuro-
surgery is greatly affected by the so-called brain shift phenomenon. This time
dependent elastic deformation of brain tissue during surgery is not recovered by
conventional navigation systems, as they typically assume rigid behavior of the
head and its contents [1]. Without any intraoperative image update procedure,
the anatomical information captured by preoperative MRI is no longer useful for
surgical guidance as it does not account for the induced soft tissue deformation.
Hence, updating the preoperative image data based on intraoperative images is
a major challenge in image guided neurosurgery.
Different intraoperative modalities such as MR, Ultrasound, Laser Range Image
and Stereo Vision are used to update the preoprative image [2]. In this work, we
introduce a new pipeline to compensate intraoperative brain shift by using 3D
vascular tree captured with cone beam CT (CBCT). Generally, we use the bi-
furcations on the vascular tree geometries as anatomical landmarks to calculate
a sparse displacement field, which is transformed to a dense displacement field
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reflecting the deformation between preoperative brain image and its intraopera-
tive state. We implemented state-of-the-art point matching algorithms [3,4] and
spline-based transformations [5,6] in the context of brain shift compensation.

2 Materials and Methods

The overall brain shift compensation pipeline presented in this study includes
the following steps: extraction of anatomical landmarks from the 3D vascular
image, use point set registration to identify homologous points, and finally, in-
terpolate the sparse displacement field on to a dense grid and updating the
undeformed (preoperative) image using the estimated deformation field. The
proposed method is evaluated using synthetic CBCT data. An elastic defor-
mation is introduced to the prefrontal part of our digital phantom in the way
described in [7]. Since the clinical data is not free of noise, the landmarks se-
lected as described in section 2.1 contains outliers. Thus, we added 20% random
outliers to the selected landmarks to evaluate the robustness of the methods.

2.1 Feature Extraction

The bifurcation points on the vessel tree were segmented automatically with
vesselness filter [8] and Otsu’s method [9]. The centerline is extracted by using
an octree data structure which examines the neighborhood of a pixel [10]. We
use a 3x3x3 window centered at each voxel lying on the centerline to detect the
bifurcation points. A bifurcation point is defined as the voxel which has more
than two neighboring voxels on the centerline.

2.2 Point Matching and Spline Based Transformation

After the segmentation and feature extraction, the resulting two 3D point sets
act as sparse anatomical landmarks on undeformed (pre-) and deformed (intra-
operative) images. In order to find one-to-one correspondence between the two
point sets and reduce the impact of noise and outliers, we investigated the Ro-
bust Point Matching (RPM) [3] and Coherent Point Drift (CPD) [4] for non-rigid
registration.
Robust Point Matching was formulated as a joint estimation of pose and corre-
spondence using the softassign and deterministic annealing algorithm. The core
idea is to optimize a fuzzy assignment least squares energy function which in-
cludes a smoothness term, an entropy term which controls the fuzziness and a
regularization term that controls the proportion of points considered as outliers.
In contrast to Iterative Closest Point (ICP) where the correspondence of two
points is binary, softassign allows the correspondence of two points to be any-
where from zero to one. This enables fuzzy, partial matches between the source
and target point sets.
Coherent Point Drift was introduced as a probabilistic approach for both rigid
and nonrigid point set registration. The authors consider the alignment of two
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point sets as a probability density estimation problem where the source point
set represents the GMM centroids and the target point set represents the data
points [4]. Two point sets are registered by estimating a set of transformation and
model parameters that maximize the posterior probability of target point set. In
order to preserve the topology of the shape being registered, the GMM centroids
are forced to move coherently. For the nonrigid point matching, a displacement
regularization term based on the motion coherent theory [11] is incorporated
into the cost function that is optimized (Matlab implementation available at
https://sites.google.com/site/myronenko/research/cpd).
Thin Plate Spline transformation [5] belongs to the family of Radial Basis Func-
tion and interpolates n-dimensional scattered data to continuous space. The
concept of Thin Plate Splines is based on the theory of deformation of thin
elastic plates, where the bending forces are orthogonal to the surface. For each
control point (source point), the distance to all points on the homologous point
set (target point set) is calculated. The weighted sum of the distances is used
to formulate the TPS at each point, which implies a control point, which is far
away from a certain point, still has influence on the position of this point.
Another popular choice to interpolate the deformation between control points is
to use B-spline. In context of medical image registration, this approach was first
proposed in [6]. In order to estimate an accurate and smooth dense displacement
field based on the control points, we used the multi-resolution approach provided
in [6]. B-splines are locally controlled, which means the position of a certain con-
trol point only affects the transformation of the points in its neighborhood.

3 Results

Four approaches to brain shift compensation were investigated in this study:
CPD with Bspline transformation (CPD-B), CPD with TPS transformation
(CPD-TPS), RPM with Bspline transformation (RPM-B) and RPM with TPS
transformation (RPM-TPS). The point set registration results for CPD and
RPM are visualized by the plots shown in Fig. 3. For the quantitative evalu-
ation, the brain tissue on the source, target and result images were segmented
manually with 3D Slicer. The Relative Overlap Metric described in [12] was used
as evaluation metric. We calculated it both for the complete brain tissue and the
region where we introduced elastic deformation (ROI) to compare the global and
local impact of TPS and Bspline tranformations.

The relative overlapping rates are shown in Tab. 1. In the fourth scenario,
only RPM-B is able to cover the deformation in ROI. However, for the data
set containing outliers, there was no improvement in the overlap metric for the
entire brain region (relative to the baseline). With the exception of the third
scenario, where the combination of CPD and B-spline transformation achieved
a slightly better result than the combination of RPM and B-spline transforma-
tion, RPM-B always outperforms the other three methods. Although the highest
overlapping rate is calculated in the first scenario, the most improvement can be
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Fig. 1. Scatter plot of the point matching result for both data sets : (a) with 20%
random outliers and (b) bifurcation points estimates as described in section 2.1. The
hyperparameters for CPD was set as follows: β = 0.2, λ = 10, outlier weight = 0.2 in
(a), β = 0.2, λ = 10, outlier weight = 0 in (b). For RPM, we used the default parameter
setting suggested in the original paper.

Table 1. Relative overlap rate of the complete brain tissue and region of interest (ROI)
after using different point matching and interpolation techniques.

Scenario Before CPD-B CPD-TPS RPM-B RPM-TPS

(1) Full Brain 0.9178 0.9371 0.9376 0.9532 0.9272

(2) ROI 0.8864 0.9316 0.9229 0.9374 0.9028

(3) Full Brain (with outlier) 0.9178 0.8531 0.6622 0.8523 0.6494

(4) ROI (with outlier) 0.8864 0.8793 0.8171 0.9230 0.8248

observed in the second scenario.

4 Discussion

In this work, we introduced a new pipeline for brain shift compensation with in-
traoperative image data from CBCT. State-of-the-art point matching methods
and spline based transformation techniques are employed for this purpose. Initial
result on synthetic image data shows RPM combined with B-spline transforma-
tion is basically a good choice. It is the most robust combination against outliers
and keeps the deformation localized. Table 1 shows, outliers affect the accuracy
of the methods greatly, especially for TPS based methods in our experiments. A
common practice to improve the performance of TPS transformation is to insert
extra landmarks manually where no deformation is expected to occur. Overall,
the TPS based methods are less accurate than their B-spline counterparts. Com-
pared with baseline, both CPD-TPS and RPM-TPS achieved better results in
the two cases where outliers are absent. With the introduction of outliers, the
results are reversed. This behavior is consistent with the theory of TPS: it is a
globally controlled transformation and sensitive to the choice of control points.
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Fig. 2. An example axial slice with displacement field overlay. (a) and (b) are the
source and target images. (c) - (f) are registration result of different methods.

This characteristic can be also observed in Fig. 3. B-spline transformation af-
fects changes only in the neighborhood while TPS introduces deformation to the
entire image volume.
The result in Fig. 3 shows, RPM behave more robust against outliers but CPD
is able to find the right correspondence for the points where RPM could not
find correspondence. This is based on the different outlier handling strategies:
RPM is rejecting outliers per se with a regularization to avoid too much rejec-
tions. CPD includes a hyperparameter which controls the relative importance of
outliers compared to the Gaussian components in the mixture model. Another
qualitative finding obtained from Fig. 3 is, that in comparison with RPM based
methods, CPD tend to introduce more undesirable deformation to the subsur-
face structure (e.g. ventricle). This observation will be further investigated and
quantified in furture work.
Since there is, rarely if ever a Gold Standard to evaluate image registration
results, no metric alone is sufficient to evaluate the performance of a nonrigid
registration method [12]. Hence, other evaluation metrics such as target regis-
tration error should also be considered in the further experiments. A possible
approach is to calculate the ground truth deformation of the volumetric meshes
by comparing the deformed and non-deformed meshes at first, then interpolate
this vector field into the image volume. Based on this ground truth deformation
field, the exact difference between the displacement calculated with our proposed
pipeline and actual displacement at each voxel can be obtained.
Another important aspect of intraoperative brain shift compensation is the com-
putational expense and numerical stability of the algorithm. B-splines are locally
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controlled, which makes them computationally efficient even for a large number
of control points. In contrast, TPS transformation is computational expensive
for large number of control points, since it considers every control point for each
voxel. Our experience also shows the calculation of the inverse of L Matrix (see
original paper [5]) is very crucial for the accuracy and numerical stability of TPS
transformation. Since the L Matrix is often not invertable, numerical tricks such
as pseudo inverse or Tikonov regularization are used to solve this problem. This
is at the expense of the accuracy of the calculation result. In context of TPS
transformation, a minimal error of each value in the inverse L Matrix leads to a
summation of the error which produces implausible deformations. Due to these
reasons, we propose to use B-spline transformation instead of TPS in subsequent
studies.
Disclaimer : The concepts and information presented in this paper are based on
research and are not commercially available.

References

1. Hill DLG, Maurer CR, Maciunas RJ, Maciunas RJ, Barwise JA, Fitzpatrick JM,
et al. Measurement of Intraoperative Brain Surface Deformation under a Cran-
iotomy. Neurosurgery. 1998;43(3):514–526.

2. Bayer S, Maier A, Ostermeier M, Fahrig R. Intraoperative Imaging Modalities and
Compensation for Brain Shift in Tumor Resection Surgery. Int J Biomed Imaging.
2017;2017:18.

3. Chui H, Rangarajan A. A new point matching algorithm for non-rigid registration.
Comput Vis Image Underst. 2003;89(2):114 – 141. Nonrigid Image Registration.

4. Myronenko A, Song X. Point Set Registration: Coherent Point Drift. IEEE Trans
Pattern Anal Mach Intell. 2010 Dec;32(12):2262–2275.

5. Bookstein FL. Principal warps: thin-plate splines and the decomposition of defor-
mations. IEEE Trans Pattern Anal Mach Intell. 1989 Jun;11(6):567–585.

6. Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ. Nonrigid
registration using free-form deformations: application to breast MR images. IEEE
Trans Med Imaging. 1999 Aug;18(8):712–721.

7. Bayer S, Maier A, Ostermeier M, Fahrig R. In: 3st Conference on Image-Guided
Interventions (IGIC 2017). Generation of synthetic Image Data for the Evaluation
of Brain Shift Compensation Methods. Magdeburg; 2017. .

8. Frangi AF, Niessen WJ, Vincken KL, Viergever MA. In: Med Image Comput Com-
put Assist Interv — MICCAI’98: First International Conference Cambridge, MA,
USA, October 11–13, 1998 Proceedings. Multiscale vessel enhancement filtering.
Berlin, Heidelberg: Springer Berlin Heidelberg; 1998. p. 130–137.

9. Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans
Syst Man Cybern. 1979 Jan;9(1):62–66.

10. Lee TC, Kashyap RL, Chu CN. Building Skeleton Models via 3-D Medial Surface
Axis Thinning Algorithms. Computer Vision, Graphics, and Image Processing.
1994;56(6):462 – 478.

11. Yuille AL, Grzywacz NM. A mathematical analysis of the motion coherence theory.
Int J Comput Vis. 1989 Jun;3(2):155–175.

12. Christensen G, Geng X, G Kuhl J, Bruss J, J Grabowski T, A Pirwani I, et al..
Introduction to the Non-rigid Image Registration Evaluation Project (NIREP);
2006.


