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Abstract. Patient motion is one of the major challenges in cone-beam
computed tomography (CBCT) scans acquired under weight-bearing con-
ditions, since it leads to severe artifacts in reconstructions. In knee ima-
ging, a state-of-the-art approach to compensate for patient motion uses
fiducial markers attached to the skin. However, marker placement is a
tedious and time consuming procedure for both, the physician and the
patient. In this manuscript we investigate the use of anatomical land-
marks in an attempt to replace externally attached fiducial markers. To
this end, we devise a method to automatically detect anatomical land-
marks in projection domain X-ray images irrespective of the viewing di-
rection. To overcome the need for annotation of every X-ray image and to
assure consistent annotation across images from the same subject, anno-
tations and projection images are generated from 3D CT data. Twelve
landmarks are annotated in supine CBCT reconstructions of the knee
joint and then propagated to synthetically generated projection images.
Then, a sequential Convolutional Neuronal Network is trained to predict
the desired landmarks in projection images. The network is evaluated
on synthetic images and real clinical data. On synthetic data promising
results are achieved with a mean prediction error of 8.4 ± 8.2 pixel. The
network generalizes to real clinical data without the need of re-training.
However, practical issues, such as the second leg entering the field of
view, limit the performance of the method at this stage. Nevertheless,
our results are promising and encourage further investigations on the use
of anatomical landmarks for motion management.

1 Introduction

C-arm cone-beam computed tomography (CBCT) systems have been used re-
cently to acquire 3D images of the human knee joint under weight-bearing con-
ditions [1, 2]. Scans under weight-bearing conditions can be beneficial for the
investigation of the knee health since it has been shown that the human knee
joint shows different properties in a natural position under load compared to
a supine acquisition [3]. Load bearing imaging requires dedicated imaging pro-
tocols. Using robotic C-arm systems driven in horizontal trajectories [1, 4, 5], it



2

takes several seconds to acquire enough 2D projection images for a clinically
satisfying reconstruction. During that time, the standing patient might move
involuntarily. This motion leads to inconsistencies in the projection data, and
thus, to motion artifacts in the reconstructions. Therefore, motion compensation
is indispensable for achieving diagnostic reconstruction quality in weight-bearing
CBCT of the knee.
In order to reduce motion induced artifacts in such scenarios, various approaches
have been proposed: autofocus-based methods optimize image-quality criteria in
reconstructions [6], registration-based approaches align acquired images to a sta-
tic reference [7, 4, 8], while range camera-based solutions image the knee surface
to estimate patient motion [5]. Another state-of-the-art method uses metallic fi-
ducial markers externally attached to the skin of the knee [1, 4]. Due to their high
attenuation, these markers are easily visible and detectable in the 2D projecti-
ons. Using the detected marker locations, 3D reference marker positions can be
computed. Having 2D positions as well as corresponding 3D reference positions,
a refined C-arm trajectory can be computed analytically in a 2D/3D alignment
step, i. e. without the need for computation-heavy optimization. Despite best-in-
class performance, the usability of this method suffers: marker placement is time
consuming, interrupts the clinical workflow, and must be executed carefully since
markers must not overlap in the projections. Therefore, a purely image-based
method similar to the fiducial marker-based approach is desirable.
A promising candidate to replace the markers are anatomical landmarks visi-
ble in projection images. Finding key points and establishing correspondences
in images of the same scene is a well understood concept in computer vision.
However, this concept does not translate easily to transmission imaging, where
the appearance of the same landmark can vary tremendously dependent on the
viewing direction. Recently, Convolutional Neuronal Network (CNN)-based se-
quential predication frameworks have shown promising performance in detecting
anatomical landmarks in X-ray transmission images of the pelvis across a large
range of viewing angles of the C-arm CT system [9].
Here, we transfer the work in Bier and Unberath et al. [9] to view-independent
anatomical landmark detection in CBCT short scans of knees under weight-
bearing conditions. To this end, a CNN is trained on synthetic projection images
generated from 3D CBCT data. In total, twelve anatomical landmarks are ma-
nually annotated in 3D and then predicted in projection domain. The network
readily establishes landmark correspondence across images suggesting that suffi-
ciently accurate landmark detection will pave the way for ”anatomical marker”-
based motion compensation. Our landmark detection is evaluated on a simulated
short scan, and two clinical CBCT scans in supine and weight-bearing condition,
respectively. The network is trained on synthetic data [9], yet, generalizes to real
projection images without the need of re-training.
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Fig. 1. Network architecture [9].

2 Method

2.1 X-ray invariant Anatomical Landmark Detection

Detection of anatomical landmarks irrespective of the viewing direction has
been proposed recently [9]. The concept of landmark detection was derived
from a sequential prediction framework, namely the Convolutional Pose Ma-
chine (CPM) [10]. This network architecture was initially developed to detect
human joint positions in RGB images and provides key benefits: it combines
local image features with increasingly refined belief maps to establish landmark
relationships. The network processes each image independently and, for each
landmark, predicts a belief map indicating the landmark position.
The network involves successive processing of the input image over several stages,
see Figure 1. In the first stage, the network architecture consists of convolutional
and pooling layers, which result in initial belief maps. In the following stages,
these belief maps are refined using both local image features and the belief maps
of the previous stage. The cost function of the network is the difference between
the predicted belief maps bpt and the ground truth belief maps b∗t of all landmarks
p ∈ {1, .., P} and in each stage t: consequently, the l2 norm of this difference
defines the cost function ft [10]:

ft =

P∑
p=1

‖bpt − b∗t ‖22 . (1)

This network structure has several properties: it has a large receptive field (160
× 160 pixels) on the input image, empowering the network to learn characteristic
global configurations over long-distances. The stage-wise manner also allows the
network to resolve ambiguities due to similar local appearance. Further, accu-
mulating the loss after each stage prevents vanishing gradients that often occur
in large CNNs [10].

2.2 Training

In order to train the network, projection images and corresponding landmark
positions have to be known. We follow the approach discussed in [9, 11] and
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Fig. 2. Anatomical landmarks defined on the surface of the bones in the knee joint.

generate projection images and annotations synthetically by annotating twelve
anatomical landmarks in CBCT volumes of the human knee, see Figure 2. The
landmarks have been selected to be good visible in the projections images as well
as clearly identifiable in the 3D volume. The CBCT volumes were reconstructions
of scans acquired in supine position (Siemens Zeego, Siemens Healthcare GmbH,
Erlangen, Germany). In total 16 CBCT volumes were available for training. Af-
ter annotation of the landmark positions in the volumes, projection images and
corresponding annotations were generated synthetically using CONRAD [12].
From each dataset, 1000 projection images were simulated. For data augmenta-
tion purposes, images were sampled during projection generation on a spherical
segment with a range of 240◦ LAO/RAO and 20◦ in CRAN/CAUD. This range
covers more than the necessary variance of a common CBCT short scan. Addi-
tionally, random translations in three Cartesian axes and horizontal flipping of
the projections were used. The belief map of a particular landmark consists of
a single normal distribution centered at the true landmark location. The size of
the projections was 615 × 479 with a pixel size of 0.6 mm. The belief maps were
downsampled eight times.
16 supine CT scans, split 14×1×1-fold in training, validation and testing data

are used for the training and testing. The network was trained with six sta-
ges for 30 epochs with a constant learning rate of 0.00001 and a batch size of
one. The optimization was done using Adam optimization. Figure 3 shows that
convergence is reached during both training and validation.

Fig. 3. Training loss (left side) and Validation loss (right side)
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2.3 Landmark Estimation

The network outputs twelve belief maps that indicate the landmark positions.
The belief map after each step is accumulated, and the 2D landmark position is
defined as the maximum response in the accumulated belief map.

3 Experiments and Results

Landmark detection is evaluated quantitatively on a synthetic short scan data-
set as well as qualitatively on two clinical CBCT scans in supine and standing
condition, respectively. In order to investigate the prediction results over the
complete trajectory, detection results sampled from different directions are re-
presented in Figure 4. Column-wise from left to right, we show results on the
synthetic dataset, the real clinical data in supine and in standing conditions,
respectively. Detected landmarks are highlighted in red and reference marker
positions in white, wherever available.

The detection results on the synthetic dataset are in good agreement with
the ground truth label positions. Visually, also the detected landmarks in the
real clinical images are in agreement with the labeled locations. Note that in
the supine scan also a part of the patient’s feet is present in some parts of the
projections. However, this does not seem to influence the landmark detections.
In the projections acquired under weight-bearing conditions a second leg is also
present in parts of the projection. Since there is a second knee in the field of
view, the detection of the landmarks is not consistently on one leg only.

Table 1. Average distance [pixels] of the predicted landmarks to the ground truth
location.

Landmark # Distance (µ± σ) Landmark # Distance(µ± σ)

1 6.6 ± 2.0 7 17.7 ± 8.6
2 10.5 ± 3.9 8 3.2 ± 1.9
3 3.8 ± 1.4 9 5.1 ± 1.6
4 8.7 ± 2.5 10 5.1 ± 1.6
5 9.5 ± 5.0 11 7.0 ± 4.6
6 18.1 ± 19.2 12 5.7 ± 3.9

Since the reference landmark locations were known on the synthetic short
scan dataset, we computed the average distance to the ground truth landmark
locations as well as the detection rate. We define a landmark as detected, if the
distance to its ground truth location is < 15 pixel and the maximum belief is
≥ 0.4. The average distance of the landmark detections on the simulated short
scan was then 8.4 ± 8.2 pixels and a detection accuracy of 89.16% is reached.
Furthermore, we investigated the quality of the selected anatomical landmarks
and computed the average distance for each landmark. The results of this are
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Fig. 4. Detection results on the synthetic (left), a supine scan (center), and a standing
scan (right).
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shown in Table 1. Large differences between individual landmarks can be ob-
served here. The best landmarks are the tip of the Fibula (landmark #3) and
landmarks inside the knee joint. It is further noticeable that landmarks with less
other neighboring landmarks, e.g. on the Patella (landmark #6), or on the Tibia
(landmark #7), are detected with a much higher uncertainty.

4 Conclusion and Outlook

The presence of patient motion during CBCT scans is one of the major challenges
in CBCT acquisitions acquired under weight-bearing conditions. Currently, an
approach based on metallic fiducial markers is used to estimate motion. Howe-
ver, marker placement is time consuming and tedious. Therefore, we investigated
the feasibility of using anatomical landmarks as image-based markers instead.
An X-ray invariant anatomical landmark detection approach was utilized to de-
tect landmarks in projection images. Trained on high quality supine data of the
knee, the network predicted belief maps in which the position of the anatomical
landmarks can be estimated in synthetic as well as in real clinical data. These
landmarks could be used to estimate motion using a 2D/3D based registration
approach. The estimation of the motion with these detections is subject of fu-
ture work. It also had been shown that some landmarks could be estimated
more robustly than others. This might contain the potential to incorporate this
information in the further processing steps. Furthermore, we believe that such
approaches might be applicable to compensate other complex body motion [13],
e. g., using motion models for respiratory [14] or cardiac motion [15].
Despite promising results on projection images of the knee, some limitations
remain. The large angular range of short scans unavoidably implies the pre-
sence of both legs in the field of view. On the one hand, bones superimpose and
hinder the detection. On the other hand, we observed ”jumping” of detections
from one knee to the other. These observations further motivate why landmark
detection seems to visually perform better on supine than on standing data.
Moreover, the method results in limited accuracy due to downsampling of the
ground truth belief maps by factor of around eight. To improve the accuracy,
an advanced network incorporating skip-ahead-connections might increase the
performance.
Despite these limitations, this work shows that the automatically landmark de-
tection works well for synthetically generated as well as for real X-ray projection
images of knee joints. In future work, we will investigate methods to make land-
mark prediction more robust, particularly in presence of additional anatomy,
and to use our predictions to estimate and compensate for patient motion du-
ring reconstruction.
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