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Abstract: C-arm cone-beam computed tomography (CBCT) has been used recently to acquire images
of the human knee joint under weight-bearing conditions to assess knee joint health under load.
However, involuntary patient motion during image acquisition leads to severe motion artifacts in the
subsequent reconstructions. The state-of-the-art uses fiducial markers placed on the patient’s knee to
compensate for the induced motion artifacts. The placement of markers is time consuming, tedious,
and requires user experience, to guarantee reliable motion estimates. To overcome these drawbacks,
we recently investigated whether range imaging would allow to track, estimate, and compensate
for patient motion using a range camera. We argue that the dense surface information observed
by the camera could reveal more information than only a few surface points of the marker-based
method. However, the integration of range-imaging with CBCT involves flexibility, such as where to
position the camera and what algorithm to align the data with. In this work, three dimensional rigid
body motion is estimated for synthetic data acquired with two different range camera trajectories:
a static position on the ground and a dynamic position on the C-arm. Motion estimation is evaluated
using two different types of point cloud registration algorithms: a pair wise Iterative Closest Point
algorithm as well as a probabilistic group wise method. We compare the reconstruction results and the
estimated motion signals with the ground truth and the current reference standard, a marker-based
approach. To this end, we qualitatively and quantitatively assess image quality. The latter is evaluated
using the Structural Similarity (SSIM). We achieved results comparable to the marker-based approach,
which highlights the potential of both point set registration methods, for accurately recovering patient
motion. The SSIM improved from 0.94 to 0.99 and 0.97 using the static and the dynamic camera
trajectory, respectively. Accurate recovery of patient motion resulted in remarkable reduction in
motion artifacts in the CBCT reconstructions, which is promising for future work with real data.
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1. Introduction

The development of recent C-arm cone-beam computed tomography (CBCT) scanners has allowed
the imaging of the human knee joint under weight-bearing conditions. To this end, experiments with
conventional as well as with dedicated extremity scanners have been conducted. The flexibility of such
systems facilitates novel scanning protocols and allows to scan patients in an upright, standing position,
bearing their own weight in a natural pose [1,2]. Such acquisitions could have high diagnostic value,
since it has been shown that the knee joint shows different mechanical properties under load [3].
However, there are several challenges that must be overcome to generate reconstructions of satisfying
image quality for use in clinical practice. These challenges include the scanner calibration of unusual,
horizontal C-arm trajectories [4], overexposure of the object border [5], radiation dose considerations [2],
optimizing scanner geometry [6], scatter [6], or a limited field of view [7]. Though, the most dominant
factor decreasing image quality is involuntary patient motion. During the scan that can take up to
30 s, motion leads to inconsistencies in the projection images. Thus, severe motion artifacts appear in
the reconstructions, which manifest as streaks, double edges, and image blur. These artifacts heavily
reduce the diagnostic value of the images. This is especially true for applications investigating fine
structures such as trabecular bone or the deformation of cartilage [8]. Hence, recovery of patient
motion in the reconstruction process in crucial.

Motion estimation and compensation is well understood in computed tomography (CT) and
CBCT. In terms of motion, the main difference between these modalities is their acquisition time.
While CT acquires images in approximately 300 ms per 360◦ rotation with a 64 row detector [9],
in CBCT an acquisition can take up to 30 s. Acquisition time is a major factor of motion, since a faster
acquisition results in less motion. One solution to reduce the scan time could be to reduce the number
of available projections, but this leads to lower image quality. If motion is periodic, gating strategies
based on surrogate signals, e.g., from the electrocardiogram [10] or respiratory belts [11] can be
used. Using these signals, projections of the object in the same motion state can be used for
reconstruction. However, this is not feasible for non-periodic motion. Furthermore, past studies have
also investigated the use of 2D/2D or 2D/3D registration approaches for motion compensation [12,13].
These compensate motion by registering the measured projection images to the reconstructed volume
in an iterative manner. In general, motion correction in CBCT can be interpreted from two perspectives:
first, it can be seen as a patient motion tracking problem; second, it can be seen as correcting
a miscalibrated scanner geometry. However, both perspectives are closely related and can be equated
to one another, resulting in the same motion correction step: both try to correct the scanner geometry,
which minimizes motion induced artifacts in the reconstructed images by estimating a motion state for
each projection.

In acquisitions under weight-bearing conditions, methods based on surrogates do not relate due
to the none periodicity of the knee motion. Further, registration methods are hardly applicable due
to overlapping Tibia, Femur, Fibula, and Patella of both legs. A first step to reduce the motion is
to immobilize the patient as far as possible during the scan. For this purpose, approaches with
cushions [2] or holding devices [1] are established to stabilize the patient. However, if motion
remains, further motion correction is indispensable. The current state-of-the-art approach uses fiducial
markers placed on the patient’s knee surface [1,14]. Due to the high attenuation of such markers,
they can be tracked in the 2D projection images. Using these, 3D reference positions are defined
and correspondences between the 2D and 3D marker positions are established. By minimizing
their projection error, rigid three dimensional motion is estimated for each projection image.
Although this method has been applied in several clinical studies [1,15–18], it has certain drawbacks:
marker placement is time consuming, tedious, and user experience is required to accurately place the
markers such that they do not overlap in the projection images. This can lead to errors in the estimated
motion. To overcome the need for placing markers, image-based methods have been investigated: first,
Unberath et al. registered the acquired projection images to maximum intensity projections of an initial
motion corrupted reconstruction, but only 2D detector shifts have been evaluated [19]. Sisniega et al.
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proposed an auto focus method to estimate the motion compensated trajectory by optimizing the image
sharpness and entropy in the reconstruction [20]. They assumed the motion to be locally rigid and thus
selected only a small region of interest in which they were able to compute high quality reconstructions.
Another approach by Berger et al. uses 2D/3D registration of a segmented bone from a motion free
supine acquisition with the acquired projection images [21]. Results showed improved sharpness at
the bone outline, but a motion free supine scan might not always be available. Moreover, epipolar and
Fourier consistency conditions, which minimize the inconsistency in the projection data, have been
investigated for this application [22–24].

In this study, we focus on a conventional CBCT scanner, where in contrast to the dedicated CBCT
scanner described by Carrino et al. [2], the X-ray source and the detector are mounted on a flexible
robotic C-arm, capable to scan both legs at the same time [1]. During scanning, the C-arm rotates
on a horizontal circular trajectory around the patient and acquires projection images from different
views [1,4,14]. Such an image acquisition setup is illustrated in Figure 1. In order to correct for patient
motion, we utilize a range camera. Range cameras have already been used in several other clinical
applications [25] such as augmented reality [26,27], motion estimation in PET/SPECT imaging [28],
and patient positioning and motion estimation in radiotherapy [29]. Very similar to the approach
described here, Fotouhi et al. investigated the feasibility on improving iterative reconstruction quality
by incorporating information of an RGB-D camera [30].

First results of our approach have been published recently, where we investigated the capability of
using a range camera to correct for patient motion in acquisitions under weight-bearing conditions [31]:
an Iterative Closest Point (ICP) registration was used to estimate motion on the point clouds observed
by the range camera. Up to now, only translational motion and a static range camera position
have been evaluated. Within this work, we bring our previous approach to clinical applicability by
(1) optimizing for three dimensional rigid body motion; (2) a pair wise ICP [32] and a probabilistic
group wise registration method [33] are compared; and (3) a second, more complex range camera
trajectory is investigated that assumes the camera to be mounted directly on the source (or detector)
of the CBCT system. These scenarios are evaluated on two simulated datasets: the first one is a high
quality reconstruction of a supine knee acquisition and the second one is the XCAT knee phantom.
Results are compared to the ground truth, the uncorrected, and the marker-based motion corrected
reconstruction [21]. Image quality of the reconstructions is evaluated qualitatively and by using
the Structural Similarity (SSIM) metric. Furthermore, the estimated motion signals are compared
and discussed.

2. Materials and Methods

In this section, the basic principles of CBCT image reconstruction, its underlying geometry, and the
influence of motion in such scans are explained briefly. We then describe how patient motion was
simulated, estimated, and incorporated using range imaging, and finally, describe the performed
experiments in detail.

2.1. Imaging Setup

An overview of our proposed imaging setup is depicted in Figure 1: the C-arm with the
X-ray source and the detector rotates around the standing patient. Simultaneously, a range camera,
placed either on the floor or directly on the C-arm, observes the knee surface. We refer to these positions
as static and dynamic camera positions throughout the paper. Equivalence in the scene captured by
the X-ray system and the dynamic setup has been investigated previously by Habert et al. [34].
As an example, in Figure 2 we show a projection image and point cloud acquired at the same time and
motion state of the object. A synchronized and co-calibrated system is assumed. The position of the
range camera has an important influence on the cross calibration, object occlusion, motion estimation,
and spatial requirements. In this paper we seek to investigate, which camera setup is most appropriate
for our application:
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• Motion estimation: compared to the static case, where the same scene is observed in each frame,
partial overlap between the point clouds occurs in the dynamic scenario. This happens since the
range camera rotates with the C-arm around the object. Registration of partly overlapping point
clouds is an especially challenging problem if a smooth, cylindrical object, such as the human
knee is imaged. Therefore, two point cloud registration methods are compared to investigate their
motion estimation capability in both scenarios.

• Calibration: co-calibration of the C-arm and the range camera is required to incorporate the
estimated motion of the range camera correctly into the reconstruction. A calibration has to be
done only once for the dynamic case, since their relative position is constant.

• Object occlusion: in an unpredictable medical environment, staff, patient clothing, or the C-arm
might temporarily occlude the field of view of the range camera. Missing or partly missing points
can heavily result in errors in the motion estimation. In the dynamic setup, the trajectory of the
C-arm has to be selected carefully, such that always the object of interest is visible. Otherwise it
could happen that the knee surface is occluded by the second knee. However, in the static setup
the rotating C-arm could also cover partly the camera’s field of view.

• Spatial requirements: limited space in the medical examination room has also to be considered for
the camera setup. A camera mounted on the C-arm takes up less space. Furthermore, the static
camera is prone to be touched, which would require a new calibration. This is rather unlikely for
the position on the C-arm.

detector

source

b) static positiona) dynamic position

Figure 1. Schematic scene of the acquisition scenario. During scanning, the C-arm rotates around the
object and acquires projections. At the same time, a range camera observes the scene. Possible camera
positions investigated in this work are either dynamic (a) or static (b).

(a) Projection image. (b) Point cloud.

Figure 2. Simulated projection image (a) with its corresponding point cloud (b).
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2.2. Cone-Beam Computed Tomography and Motion

In C-arm CBCT projection images are usually acquired on a circular trajectory. A common
acquisition to perform 3D imaging is a short scan [35], where the system rotates 180◦ plus its fan angle.
In order to reconstruct a volume from a stack of acquired projections, the imaging geometry for every
image has to be known precisely. This is described with projection matrices for each projection [36].
A projection matrix Pj is a 3× 4 matrix, which defines the projection of an object onto the detector for
a given discrete time point j [37]. In general, it can be decomposed into an intrinsic matrix K j ∈ R3×3

and an extrinsic matrix Ej ∈ R4×4, containing the rotation and the translation:

Pj = K j

1 0 0 0
0 1 0 0
0 0 1 0

 [
Rj t j
0 1

]
. (1)

Rj ∈ R3×3 and t j ∈ R3 describe the rotation and translation of the camera. Thus, the geometry of
a single view can be manipulated by multiplying an affine transformation M j to the right side on the
projection matrix Pj, yielding an updated projection matrix P′ j:

P′ j = Pj M j. (2)

In the same way, rigid patient motion (described by M j) can be included into the scenario.
As mentioned earlier, including object motion or correcting a miscalibrated scanner geometry is
compensated the same way. This is possible since only the relative position of the CBCT system to the
object is important for reconstruction.

2.3. Data Generation

Our proposed method relies on point clouds and projection data, acquired at the same time under
the same motion state of the object (example images are shown in Figure 2). In this section, we describe
how we created this data.

• Point clouds are generated using a voxelized volume of the object. For each discrete time step,
the volume was transformed rigidly. The surface of this volume was then sampled using a ray
casting approach. The range camera was modeled using projective geometry with properties
similar to the Microsoft Kinect One v2 [38,39]: the sampled points lie on a grid like pattern,
as shown in Figure 2b. In the isocenter of the C-arm scanner, which is the area of interest for CBCT
scanning, the distance of the sampled points was approximately 1.4 mm in image space. A depth
resolution of 1 mm was applied with a camera distance of 75 cm. These settings were the same for
the static and the dynamic camera position. The only difference lied in the different trajectories of
both setups. For the experiments, we further created point clouds with and without noise. This
noise was approximated as Gaussian noise with a standard deviation of 1 mm.

• X-ray projections are created from the same volume used for the point clouds. Given a C-arm
trajectory, i.e., several projection matrices that describe the C-arm rotation around the object,
the volume was forward projected yielding a stack of 2D projection images. Motion was
incorporated using Formula (2). This was done using CONRAD, an open-source software
framework dedicated for cone-beam imaging simulation and reconstruction [40].

• Motion used to corrupt the data was realistic knee motion of a standing subject, measured with
an VICON (Vicon Motion Systems Ltd, Oxford, UK) motion capture system [1]. The same motion
pattern was applied in the point clouds and projection images simulation.

2.4. Motion Estimation Using Range Imaging

Figure 3 outlines the work flow of our proposed method: we started with a stack of point clouds
and projections with their corresponding calibration data (projection matrices). For each time step j,
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a transformation M j was estimated using point cloud registration. Using Equation (2), motion corrected
projection matrices were subsequently calculated. These were then used to compute motion corrected
reconstructions. We evaluated two different point cloud registration algorithms. The first one was
a point-to-plane ICP algorithm applied in a pair wise manner. The second was a probabilistic group
wise approach [33].

Motion estimate M j

Projection matrices Pj

P∗j = Pj ∗M j

Projection stackPoint cloud stack

Reconstruction

Figure 3. Method work flow: point clouds were used to estimate patient motion, which is then used
for reconstruction.

2.4.1. Iterative Closest Point Algorithm

The Iterative Closest Point (ICP) algorithm minimizes point-wise distances between two point
clouds, by iteratively performing two steps: first, point correspondences between two point clouds
are established by searching for the minimal distance between points. In a second step, a rigid
transformation is computed by minimizing the squared distances between the corresponding pairs
using for example the Singular Value Decomposition. In contrast to this conventional ICP algorithm,
the point to surface ICP optimizes the distance of points in one sample, to the surface of the other
point cloud, in order to estimate the desired rigid transformation that aligns the two. See [32] for
more detailed mathematical formulations of the ICP and its variations. This strategy tends to be more
accurate because we cannot guarantee that exactly the same points were sampled. The ICP algorithm
was applied in a pair wise fashion, meaning that always only two of the point clouds were registered
with each other. Therefore, in the static camera position, all acquired frames were registered to the first
frame, which acts as reference frame for the algorithm. However, this was not feasible for the dynamic
camera position because frames far apart from each other did not overlap. Hence, we registered to the
preceding frame and concatenated the estimated transformations.

2.4.2. Group-Wise Rigid Registration Using a Hybrid Mixture Model

When registering multiple samples to a common reference frame, group-wise approaches are
in general favorable to their pair-wise counterparts, as they provide an unbiased estimate for the
desired transformations. In a recent study [33], the authors proposed a group-wise, probabilistic
registration approach for multi-dimensional point sets, comprising both spatial positions and their
associated surface normal vectors. This is achieved using a hybrid mixture model (HdMM) that
combines distinct types of probability distributions. The main advantage of probabilistic point
cloud registration techniques over conventional ICP is their ability to handle samples with different
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cardinalities, without relying on closest point-to-point or point-to-plane distance measures to establish
correspondences during the registration process. Additionally, they are more robust to noise and
outliers, which typically challenges traditional ICP-based approaches. Furthermore, the unique aspect
of the HdMM framework is the estimation of rotation matrices, by jointly optimizing over both spatial
positions and their associated surface normal vectors. Consequently, rotation estimation is driven by
both types of information, which is particularly useful for registering samples with partial overlaps.

Probabilistic approaches cast the registration problem as one of probability density estimation,
typically achieved using by maximizing the log-likelihood function [33,41]. A group of J hybrid
point sets denoted H = Hj=1...J , where each point hji (representing the ith on the jth sample)
is a 6-dimensional vector constructed by concatenating spatial position and its corresponding
surface normal vector i.e., hji = [xji, nji], is jointly registered and clustered using a HdMM with
M mixture components, by maximizing the log-likelihood function (refer to Equation (3a) using
EM. The log-likelihood is formulated by assuming the points in each sample and samples in each
group, to be independent and identically distributed. Here the joint probability density function of
position and surface normal orientation is approximated as a product of their individual conditional
densities, denoted S(xji|Θp) and F(nji|Θn), respectively. Θp and Θn represent the set of unknown
parameters associated with the constituent t-distributions and Von-Mises-Fisher (vmF) distributions,
respectively, in the HdMM, and πm represent the mixture coefficients. A tractable solution to maximizing
Equation (3a) is achieved using EM, by maximizing the expected complete data log-likelihood Q,
described by Equation (3b). EM iteratively alternates between two steps: (1) E-step, where the
expectations of the latent class memberships, Pjim, are evaluated; and (2) M-step, where the estimated
posterior probabilities Pjim are used to revise estimates for the desired rigid transformations Tj = [Rj, tj]

and mixture model parameters (Θp, Θn). In Equation (3b) and throughout this study, Rj and tj denote
the rotation and translation estimated for the jth sample in the group, σ2 represents the variance of the
t-distributions, mp

m and md
j represent the mean position and mean normal vector of the mth component

in the mixture model, and κm=1...M represent the concentration parameters of the vmF-distributions.
Here, κm describe the concentration of the observed normal vectors nji about the direction mean normal
vector md

m, with higher values indicating less dispersion in directions about the mean.

ln p(H|Θp, Θn) =
J

∑
j=1

N

∑
i=1

ln
M

∑
m=1

πmS(xji|Θp)F (nji|Θn) (3a)

Q(Tt+1
j , Θt+1

p , Θt+1
n |Tt

j, Θp, Θn) =
J

∑
j=1

N

∑
i=1

M

∑
m=1

Pt
jim

[
−||xji −Rjm

p
j − tj||2

2σ2 + κm(Rjmd
m)

Tnji

]
(3b)

As discussed previously in Section 2.1, the main application of interest in this study was motion
compensation for 3D reconstruction of CBCT knee images under two distinct range camera trajectories,
namely, static and dynamic. For the former, group-wise rigid registration using the HdMM framework
was employed to jointly register multiple static knee views acquired using the range camera. As each
view/sample in the static case represented the same region of the knee, HdMM-based registration
could be applied directly to the point clouds representing each view. For the dynamic case on the other
hand, as each view/point cloud represented a different part of the knee, they contain partial overlaps
with one another. Consequently, group-wise registration could not be applied directly to the samples,
as this would resulted in the estimation of transformations that maximized the overlap between
views, rather than those that recovered patient motion while retaining partial overlaps. As group-wise
registration jointly estimates a mean template/shape representative of the group of samples being
registered, a priori estimation of a mean template representing the full 3D knee shape was necessary,
to register the dynamic views. This was achieved by first clustering the dynamic view point clouds to
obtain an initial mean knee shape, and subsequently, using this as a template to rigidly register all
samples in the group. This process was repeated three times, with increasing densities for the mean
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shape, to refine its estimate following the initial clustering step, and thereby improve the estimated
rigid transformations.

2.4.3. Reconstruction Pipeline

Reconstructions are obtained using a filtered backprojection algorithm with the updated projection
matrices. As the name indicates, the acquired projection images are first filtered and then backprojected
into the volume. We use the Feldkamp-David-Kress backprojection algorithm [42]: the projection data
is preprocessed using cosine weighting, Parker redundancy weighting, and row-wise ramp filtering.
In the last step, the projections are backprojected into the volume. One can image this as smearing
the measured values into the volume along the rays that are described by the projection matrix of this
projection. The reconstructions are performed using CONRAD [40].

2.4.4. Experiments

In order to evaluate our novel motion compensation approach, we simulated two datasets with
two different range camera trajectories. For both experiments, 248 projection images and point clouds
were simulated. The projections had a size of 1240× 960 pixels with an isotropic pixel resolution
of 0.308 mm. The number of points of a single point cloud changed between frames but contained
approximately 8000 points.

As mentioned earlier in Section 2.3, the projection images and point clouds are generated under
the influence of realistic patient motion. The motion used for this was obtained by measuring the
movements of standing subjects with a motion capture system, thus the amount and characteristic of
motion reflects motion that can be observed in a standing subject. Note, that weight-bearing can also
be achieved in a supine position using pressure plates. This case is not investigated in this work.

• Dataset 1: one knee of a high resolution reconstruction of a supine scan acquired with clinical
C-arm CT system (Artis Zeego, Siemens Healthcare GmbH, Erlangen, Germany) is extracted.
The projection matrices used are real calibrated projection matrices from the same clinical C-arm
CBCT system, which was operated on a horizontal trajectory [4]. With this dataset, we conducted
two experiments: one without and one with simulated noise in the observed point clouds.

• Dataset 2: the XCAT phantom [43] has been used to simulate the legs of a standing patient,
squatting with a knee flexion of 40◦. The trajectory for this scan has been created using CONRAD,
such that one knee of the XCAT phantom is always present in the field of view of the range camera.
In contrast to dataset 1, two legs are in the simulation volume. Note, that the point clouds of this
dataset were post processed to obtain the points of a single knee only.

2.4.5. Evaluation Methodology

In order to compare the image quality of the results, the SSIM metric was computed. The SSIM
quantifies the distortion between a reference and distorted image. In contrast other well know
measures, like the Correlation Coefficient or the Root Mean Square Error, SSIM is motivated by
incorporating more structural information that matches the human visual perception. This is done
by normalizing the compared intensities with respect to their luminance and contrast. See [44] for
more implementation details. To this end, all reconstructions have been registered to the motion free
reference reconstruction using elastix [45]. This has been necessary, since the reconstruction can be
shifted in the volume depending on the reference frame of the motion compensation.

3. Results

In Figure 4, we show axial slices of reconstruction results of dataset 1. In the first row,
the motion free reference, the motion corrupted, and the marker-based corrected reconstructions
are shown. Clearly, severe motion artifacts, such as streaks and blur, are present in the uncorrected
reconstruction. Most of the artifacts were reduced substantially using the marker-based approach.
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However, distinct streaks remained in the volume that appear due to marker overlap in these views
resulting in an inaccurate estimation. In the second row, the results using the point cloud registration
approaches are shown: Figure 4d,e show the results of the static camera position, whereas Figure 4f,g
show the results for the dynamic range camera trajectory. In all cases, there has been substantial
improvement in the reconstructions relative to the uncompensated case. Visually, the best result were
achieved with the ICP on the static dataset. Comparing the results of the dynamic scenario Figure 4f,g,
a slightly better result has been achieved with the probabilistic approach. This might be due to the pair
wise fashion of the ICP algorithm that could lead to a summation of the error and thus in a drift in the
estimated motion signal.

(a) Motion free. (b) Corrupted. (c) Marker-based.

(d) ICP, static. (e) Probabilitic, static. (f) ICP, dynamic. (g) Probabilistic, dynamic.

Figure 4. Reconstruction results of dataset 1: axial slices of the motion free reference volume (a);
the motion corrupted (b); the marker-based corrected (c); and the proposed methods (d–g).

This observation was endorsed by the results of the noise experiments, where the motion has
been estimated on the point clouds with added noise. The results of this experiment are shown in
Figure 5. Again, we compared the results of the ICP and the probabilistic approach: the two images on
the left compare the results of the static camera position, while on the right the results achieved with
the dynamic camera trajectory are shown. In both scenarios the probabilistic approach showed less
streaks in the reconstructions, see Figure 5b,d. Nearly no difference between the noise free and the
noisy dataset can be observed for this method.

(a) ICP, static. (b) Probabilistic, static. (c) ICP, dynamic. (d) Probabilistic, dynamic.

Figure 5. Reconstruction results of dataset 1 achieved with noisy point clouds.
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In Figure 6, the estimated motion signals are shown for dataset 1. The estimated and reference
rotations are shown in the top row, while the corresponding translations are shown in the bottom
row. Note, that the x and y direction define the axial plane, whereas z is parallel to the rotation axis
of the C-arm. The offset in the estimated signals resulted from the different references used by the
optimization schemes of the registration methods. An offset in these motion signals compared to the
ground truth leads to a shift in the volume, which is compensated by the subsequents registration of
the volumes. Due to the cone-beam geometry, this shift can cause cone-beam artifacts. Starting with
the marker-based estimation, one can observe heavy outliers in the estimated signals. These outliers
resulted from views in which some of the fiducial markers overlapped with one another in the
projection images. Consequently, this lead to incorrect correspondences and thus to errors in the
estimated parameters. Apart from that, the marker-based method estimated the motion well. If we
compare the ICP estimation with the estimation of the probabilistic registration, one can observe more
noise in the estimation of the latter. Furthermore, it is noticeable that the least accurate component of
the estimated translations has been the z-component. However, in the dynamic scenario the drawback
of the ICP-based registration approach was evident: a drift of the signal due to the pair-wise nature
of the algorithm can be observed. Errors in the estimation accumulated with each successive pair of
views that were registered and ultimately, resulted in the drift observed towards the end of the scan
(refer to Figure 6). This effect has been even more severe for the noise experiments.

Figure 6. Estimated motion signals. The rotation parameters are Euler angles calculated from the
estimated rotation matrices in order to simplify the presentation.

After the qualitative assessment of the reconstruction quality and the estimated signals,
we evaluated the SSIM metric for each reconstruction, relative to the motion free volumes, see Table 1.
The quantitative values were in agreement with the visual impressions: all motion correction
approaches improved the results compared to the uncorrected reconstruction. The best result has
been achieved in the static scenario using the ICP approach, where a SSIM of 0.99 could me measured.
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This indicates that most of the motion could be recovered. For the dynamic scenario the probabilistic
method outperformed the ICP and a SSIM of 0.97 could be achieved. However, in the dynamic case,
none of range camera-based approaches achieved results comparable to the marker-based approach.

Table 1. Structural Similarity (SSIM) results of the reconstructed images for dataset 1 and dataset 2.

Method Dataset 1 with Noise Dataset 2

Uncorrected 0.93 - 0.81
Marker-based [1] 0.98 - 0.98

ICP static 0.99 0.95 0.99
Probabilistic static 0.98 0.98 0.99

ICP dynamic 0.94 0.94 0.95
Probabilistic dynamic 0.96 0.97 0.94

As it has been already visible in the shown reconstruction images, the influence of the noise in the
data has effected the results of the ICP more compared to the probabilistic approach. According to the
calculated SSIM, the noise did not influence the performance of the probabilistic approach, it remained
the same for the static case and could even slightly improve for the dynamic scenario.

The reconstruction results for dataset 2 are shown in Figure 7. In general, the same observations
as for dataset 1 can be observed: both proposed methods in both scenarios could improve the results
compared to the uncorrected reconstruction. As in the first dataset, visually, the best result have
been achieved using the ICP in the static scenario. The results got worse in the dynamic scenario.
These observations match also with the SSIM values shown in Table 1.

(a) Motion free. (b) Corrupted. (c) Marker-based.

(d) ICP static. (e) Probabilistic static. (f) ICP dynamic. (g) Probabilistic dynamic.

Figure 7. Reconstruction results of dataset 2: axial slices of the motion free reference volume (a);
the motion corrupted (b); the marker-based corrected (c); and the proposed methods (d–g).

4. Discussion

We presented a novel approach for tracking patient motion in C-arm CBCT acquisitions under
weight-bearing conditions. We suggested to estimate motion using a range camera placed either on the
floor or on the C-arm directly. In our proposed acquisition protocol, a range camera simultaneously
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observed the patient during the CBCT scan. After that, the acquired point clouds were registered
resulting in motion estimates, which were then incorporated into the reconstruction. Compared to
the state-of-the-art marker-based method, our method achieved comparable image quality without
the need for marker placement. Although, only rigid body motion was estimated, we believe that
using the dense surface information provided by the range camera, more complex deformation fields,
accounting for non-rigid deformations (such as of the skin and muscles for example), may be estimated.
The work presented in this paper is thus, a pre-cursor to subsequent work that will look to account for
non-rigid deformations.

For the simulation study, point clouds and projections were simulated under realistic patient
motion. Motion was estimated using two different point cloud registration approaches, namely: a pair
wise point-to-plane ICP and a probabilistic group wise method. We validated our method on two
different datasets qualitatively and quantitatively by calculating the SSIM metric. In most cases,
our proposed method was able to recover the simulated patient motion well and was able to reduce
motion artifacts noticeably. However, estimated rotation about the z axis in particular, was found to
be more noisy. This can be explained by the shape of the knee that is cylindric with its axis aligned
with the z axis. Rotation around this axis has no large influence on the cost function of the registration
since there are too few features in this direction. Furthermore, the motion estimated by the group-wise
method is also found to be more noisy than the results achieved by the ICP. We believe that this is
due to the current implementation of this method: all point clouds are currently registered to a mean
shape. Due to performance reasons and due to memory constraints, this mean shape contains fewer
points than a single point cloud (1000 points used to define the mean shape, which correspond to
1000 components in the mixture model). This means, that less information is used in the actual
registration step. The ICP, on the other hand, showed a slight drift in the estimated motion for the
dynamic scenarios that resulted from its pair wise manner. Errors added up due the concatenation of
the estimated transformations. This behavior might be even more distinct under realistic conditions,
where noise could adversely affect the performance even more. This has also been proven in the noise
experiments, where we showed that noise effects the ICP results more than the results obtained by the
probabilistic approach. This will be further investigated in future work on real data.

Despite the encouraging results achieved in this study, the proposed method still has several
limitations: (1) real data experiments have to be conducted in order to demonstrate its practical
applicability. To this end, technical challenges such as cross calibration or synchronization of both
systems have to be overcome [46,47]; (2) only three dimensional rigid motion was simulated and
estimated that does not reflect realistic patient motion. Motion of human joints is a highly complex
combination of multiple rigid body transformations of the bony and deformable displacements of
the surrounding soft tissue. However, we believe that an approach using an RGBD camera that
delivers dense depth and color information of the human knee, is able to recover such sophisticated
displacements fields. Algorithms, such as a Simultaneous Localization and Mapping (SLAM)
algorithms, could be adjusted to solve the motion estimation problem [48]. That could also improve
the current results for the rotation estimation around the z axis in particular, since the use of color as
additional information during registration could help improve results in this regard; (3) estimation of
translation in the z direction is difficult. We believe that this is the result of the limited field of view
of the range camera, which causes truncation of the point clouds in this direction. This might be
addressed using a previously reported approach, which incorporates image based motion estimation
to stabilize these results [49]; (4) evaluation on sensor noise and measurement accuracy has to be
investigated. This is especially important when dealing with real depth data containing a high amount
of noise and other physical artifacts. In real data experiments, range camera specific error sources such
as intensity or temperature related errors, multi-path effect, outliers, or discontinuities in the depth
estimation have to be expected [25]. This could be tackled by using more advanced depth cameras as
proposed by Willomitzer et al. [50]. They propose a depth camera setup that can provide a high spatial
resolution up to 300,000 points and an accuracy of 1/1000 of the distance measuring range; (5) the best
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results were achieved using the ICP algorithm in the static scenario. However, considering the practical
applicability of the method, the more realistic and favored camera position is the dynamic one, since
it requires a single calibration only, uses less space, and less occlusion is expected. However, the
results achieved from the dynamic setup are not clinically satisfying yet. Despite these limitations, the
presented work highlights the potential of range camera motion estimation for acquiring images of the
knee under weight bearing conditions. In particular, we showed that estimating patient motion with
a camera mounted on the C-arm is possible and image quality could be improved without the need
of marker placement or a prior supine scan. This work enables future work on real data with more
complex motion and facilitates the opportunities of novel acquisition setups.
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