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Percutaneous procedures can be difficult

• Percutaneous surgery: No direct view onto anatomy

• Indirect feedback: X-ray images

 Projective transformation: Multiple views required

 Mental mapping: Tool to patient from images
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Percutaneous pelvis fixation

• Difficult anatomy: Complex fractures

• Pre-op. 3D available: Not used intra-op.

• Guidance: Mobile, non-robotic C-arms

• Per screw:  > 1h and > 100 X-rays

 Very tedious procedures
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Anatomical landmarks: A powerful concept

They …

… provide context  Supports intra-operative decision making!

… supply semantic information  Defines correspondences (camera pose)!

… foster machine understanding  Groundbreaking steps towards autonomy!

…
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Detect anatomical landmarks in X-ray images 

independent from the viewing direction

Step 2

Semantic knowledge enables 

initialization of 2D/3D registration

Step 1

Detection
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Landmark appearance can change substantially

Not comparable with reflection imaging

 Structures overlap and edges vanish in transmission imaging

 Common techniques (e.g. local descriptors) not generally appropriate

?

frontal view lateral view
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Architecture: Sequential predication framework

Input:    X-ray image

Output: One heatmap per landmark (multi-task learning)

• Large receptive field  Reveal global configurations

• Stage wise application  Resolve ambiguities
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How to train the network?

We need the 2D locations of all 23 landmarks in each projection

 Infeasible to manually label in 2D (time, accuracy, consistency)

CT volume with 23 labels

Projection of the volume

Physics-based simulation via DeepDRR

(Poster ID W-6; Available on Github)

Projection of the 3D labels

Training data

X-ray

Heatmaps
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View invariance needs augmentation

20 CT volumes  20.000 training images

120° RAO/LAO

90° CRA/CAU

flipping

SID

tx, ty, tz

X-ray source

Detector
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Results
Average error:

9.1 ± 7.4 pixels

5.6 ± 4.5 mm
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Resolving ambiguities

Task: Detect the tip of the right femur

Example 1

Landmark in FOV

Example 2

Landmark not in FOV

Stage 1 Stage 3 Stage 6
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Network transfers to real data

Estimated 2D/3D pose: Analytic solution via direct linear transform  Initialize registration (global!)

Landmark predictions
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Discussion and Conclusion

“The first tool for anatomical landmark detection

in X-ray images independent of the view.” 

Improving accuracy

Towards robust performance in presence of tools

Push deployment for 2D/3D registration

Strong prospect for other anatomies and applications 
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Thank you!

Find us at poster W-1 

Clinical collaborator 

Prof. Greg Osgood M.D


