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Abstract—Automatic multi-organ segmentation of the dual
energy computed tomography (DECT) data can be beneficial for
biomedical research and clinical applications. Recent advances in
deep learning showed the feasibility to use 3D fully convolutional
networks (FCN) for voxel-wise dense predictions in single energy
computed tomography (SECT). In this paper, we propose a 3D
FCN based method for automatic multi-organ segmentation in
DECT. The work was based on a cascaded FCN for the major
organs trained on a large set of SECT data. We preprocessed
the DECT data by using linear weighting and fine-tuned the
FCN for the DECT data. The method was evaluated using 42
torso DECT data acquired with a clinical dual-source CT system.
Four abdominal organs (liver, spleen, left and right kidneys) were
evaluated with cross-validation strategy. Effect of the weight on
the accuracy was researched. In all the tests, we achieved an
average Dice coefficient of 93% for the liver, 92% for the spleen,
91% for the right kidney and 89% for the left kidney, respectively.
The results show that our method is feasible and promising.

I. INTRODUCTION

The Hounsfield unit (HU) scale value depends on the inher-
ent tissue properties, the x-ray spectrum for scanning and the
administered contrast media [1]. In a SECT image, materials
having different elemental compositions can be represented by
identical HU values [2]. Therefore, SECT has challenges such
as limited material-specific information and beam hardening as
well as tissue characterization [1]. DECT has been investigated
to solve the challenges of SECT. In DECT, two energy-specific
image data sets are acquired at two different X-ray spectra,
which are produced by different energies, simultaneously.
The multi-organ segmentation in DECT can be beneficial for
biomedical research and clinical applications, such as material
decomposition [3], organ-specific context-sensitive enhanced
reconstruction and display [4], [5], and computation of bone
mineral density [6]. We are aiming at exploiting the prior
anatomical information that is gained through the multi-organ
segmentation to provide an improved context-sensitive DECT
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imaging [4], [5]. The novel technique offers the possibility
to present evermore complex information to the radiologists
simultaneously and bears the potential to improve the clinical
routine in CT diagnosis.

Automatic multi-organ segmentation on DECT images is a
challenging task due to the inter-subject variance of human
abdomen, the complex 3D intra-subject variance among or-
gans, soft anatomy deformation, as well as different HU values
for the same organ by different spectra. Recent researches
show the power of deep learning in medical image segmen-
tation [7]. To solve the DECT segmentation problem, we use
the successful experience from multi-organ segmentation in
volumetric SECT images using deep learning [8], [9]. The
proposed method is based on a cascaded 3D FCN, a two-stage,
coarse-to-fine approach [8]. The first stage is used to predict
the region of the interest (ROI) of the target organs, while the
second stage is learned to predict the final segmentation. No
organ-specific or energy-specific prior knowledge is required
in the proposed method. The cross-validation results showed
that the proposed method is promising to solve multi-organ
segmentation problem for DECT. To the best of our knowl-
edge, this is the first study about multi-organ segmentation in
DECT images based on 3D FCNs.

II. MATERIALS AND METHODS
A. Network Architecture for DECT Prediction

As described by Krauss et al. [10], a mixed image display
is employed in clinical practice for the diagnose using DECT.
The mixed image is calculated by linear weighting of the
images values of the two spectra:

Imix = α · Ilow + (1− α) · Ihigh (1)

where α is the weight of the dual energy composition, Imix
denotes the mixed image. Ilow and Ihigh are the images at low
and high kV, respectively.

We preprocessed the DECT images following Eq. 1 straight-
forwardly. Figure 1 illustrates the network architecture of the
proposed method for the DECT multi-organ segmentation. To
prepare network training, labeled segmentation is generated
manually by experts for each training data. In the training
phase, first of all, mixed image is calculated by combining
the images at the low energy level and the high energy level
using Eq. 1. Then, a binary mask is generated by thresholding
the skin contour of the mixed image. Subsequently, the mixed



Fig. 1: Cascaded network architecture for DECT multi-organ segmentation

image, the binary mask and the labeled image are given into
the network as multi-channel inputs. The network consists
of two stages. The first stage is applied to generate the
region of the interest (ROI) in order to reduce the search
space for the second stage. The prediction result of the first
stage is taken as the mask for the second stage. Each stage
is based on a standard 3D U-Net [11], which is a fully
convolutional network including an analysis and a synthesis
path. We used the open-source implementation of two stages
cascaded network [8] developed by Roth et al. based on the
3D U-Net [11] and the Caffe deep learning library [12]. The
cascaded network was trained by Roth et al. [8] on a large set
of SECT images including some of the major organ labels.
Our model was trained by fine-tuning the pre-trained network
with the mixed DECT images using the pre-trained weights
as initialization. The difference between the network output
and the ground truth labels are compared using softmax with
weight voxel-wise cross-entropy loss [8], [11].

B. Experimental Setup

The proposed method was evaluated with 42 clinical torso
DECT images scanned by the department of radiology, uni-
versity hospital Erlangen. All of the images were taken from
male and female adult patients who had different clinically
oriented indication justified by the radiologist. Ultravist 370
was given as contrast agent with body weight adapted volumes.
The images were acquired at different X-ray tube voltage
setting of 70 kV (560 mAs) and Sn 150 kV (140 mAs, with
Sn filter) using a Siemens SOMATOM Force CT system with
Stellar, an energy integrating detector. The traning volumes
contains 992-1290 slices with slice size 512x512 pixels. The
voxel dimensions are [0.6895-0.959, 0.6895-0.959, 0.6] mm.
Four abdominal organs were tested, including liver, spleen,
right and left kidneys. Ground truth was generated by experts
manually.

To avoid the bias of the data selection and to keep the dataset
distribution similar, a manifold learning-based technique [13]
was applied to split the data into training dataset, validation
dataset, and test dataset. First, the images were resized to
the same image spacing (e.g.[3mm 3mm 5mm]). Then, the
distribution of the images was calculated and plotted by using
locally linear embedding (LLE) [14]. Subsequently, the images

Liver Spleen r.Kidney l.Kidney

DECT

Avg. 0.92 0.84 0.88 0.87
SD 0.02 0.08 0.03 0.03

Min. 0.84 0.62 0.80 0.78
Max. 0.94 0.95 0.94 0.93

TABLE I: Dice coefficients of cross-validation with
αtraining=0.6 and αtest =0.6. SD is abbreviated for standard
deviation.

were clustered into 3 classes using k-means. Finally, training
data, validation data, and test data were selected randomly
from these classes with the ratio 5:1:1, i.e. in each test we
used 2 images from each class (6 in total) for validation, 2
images from each class for test (6 in total), and the remaining
30 images for training.

III. RESULTS

A. Performance Estimation with Cross-Validation

NVIDIA GeForce GTX 1080 Ti with 11 GB memory was
used for all of the experiments. The similarity between the
segmentation result and the ground truth was measured with
Dice metric by using the tool provided by VISCERAL [15].
First, the performance of the proposed method was estimated
by 8-folds cross-validation, using 0.6 as αtraining as well as
αtest. Fig. 2 shows one segmentation results in 3D. TableI sum-
marizes the Dice coefficients of the segmentation results and
compares DECT results with the SECT results. The proposed
method under the above weight condition yielded an average
Dice coefficient of 92% for the liver, 84% for the spleen, 88%
for the right kidney and 87% for the left kidney, respectively.
Fig. 3 plots the distributions of the Dice coefficients for
different test scenarios and showed the high robustness of the
proposed method. Though the Dice coefficients under above
mentioned weight condition are less than SECT results in [9],
we performed a second test which is focused on the weight
alpha both for training and for test phase.

B. Study on the Weight α

We are aiming at exploiting the spectral information in the
DECT data. Since the α mixing results basically in pseudo
monochromatic images comparable to single energy scans,
the influence of the weight α on the accuracy was further



Fig. 2: 3D rendering of one DECT segmentation with yellow
for liver, blue for spleen, green for right kidney and red for
left kidney

Fig. 3: Dice coefficients of the target organs with αtraining = 0.6
and αtest = 0.6 for 8 different testing folds

researched. 0, 0.3, 0.6, 0.9 and 1 were chosen as αtraining and
αtest in this study. Table II lists the average Dice coefficient.
For all of the cases, the liver had the highest accuracy (92%-
93%). The segmentation of the right kidney was usually more
accurate than the left kidney. The best Dice values per organ
per training set are highlighted in Table II. The test with
αtraining=0.9 and αtest=0.9 obtained the highest accuracy for
liver and right kidney. The test with weight combination 0.9-
1 showed the best segmentation for spleen, the combination
with 0.9-0.3 had the finest result for left kidney. High αtest
generated better segmentation for liver and spleen. For most
organs, the best Dice values of DECT are higher than the
SECT results given in [9].

IV. DISCUSSION AND CONCLUSION

We proposed a deep learning based method for automatic
abdominal multi-organ segmentation in DECT. The evaluation
results show the feasibility of the proposed method. Compared
to the results of the SECT images reported by Roth et al. [9],
our method is promising and robust (see Table II). For most
organs, the segmentation of our method is more accurate than
the SECT [9] when an optimal fusion weight is selected. The
results illustrate that the image fusion affects the segmentation
of DECT. In the cross validation, the third testing fold had a
large deviation. The reason could be that our image data were

αtraining-αtest Liver Spleen r.Kidney l.Kidney
0-0 0.908 0.878 0.840 0.852
0-0.3 0.915 0.876 0.860 0.841
0-0.6 0.919 0.875 0.865 0.839
0-0.9 0.922 0.876 0.864 0.837
0-1 0.923 0.876 0.861 0.835
0.3-0 0.876 0.885 0.845 0.835
0.3-0.3 0.924 0.899 0.900 0.891
0.3-0.6 0.925 0.902 0.891 0.881
0.3-0.9 0.926 0.901 0.877 0.859
0.3-1 0.921 0.900 0.877 0.854
0.6-0 0.865 0.857 0.786 0.796
0.6-0.3 0.909 0.897 0.844 0.885
0.6-0.6 0.922 0.904 0.895 0.887
0.6-0.9 0.912 0.906 0.895 0.873
0.6-1 0.919 0.908 0.843 0.866
0.9-0 0.881 0.848 0.745 0.764
0.9-0.3 0.930 0.901 0.898 0.892
0.9-0.6 0.932 0.908 0.904 0.873
0.9-0.9 0.933 0.915 0.906 0.862
0.9-1 0.930 0.917 0.905 0.872
1-0 0.907 0.822 0.784 0.812
1-0.3 0.912 0.886 0.869 0.889
1-0.6 0.915 0.895 0.879 0.886
1-0.9 0.917 0.901 0.879 0.891
1-1 0.918 0.902 0.877 0.891
SECT [9] 0.95 0.90 0.90 0.88

TABLE II: Dice coefficients of different alpha for testing fold
1. Bold denotes the best organ results of DECT. Italic underline
denotes the best results in the group with the same training
weight. Notice that the DECT and SECT approaches used
different data set.

taken from patients with different disease (liver tumor, spleen
tumor, etc.). The disease type is not considered by the data
selection. Training and test with inconsistent symptoms could
have an impact on the accuracy.

The study on the weight can be divided into three groups
with different αtraining. α=0.9 is close to the low energy
images which have on average the best soft-tissue contrast,
αtraining=0.9 worked thus better in general. The intra-group
comparison showed that the cases with identical training and
test conditions had a higher probability to get the best seg-
mentation result. This is expected because the mixed images
generated by the matched training and test conditions may
have the highest similarity. Furthermore, the comparison of the
case 0.3-0.9 (low-contrast model for high-contrast image) with
the case 0.9-0.3 (high-contrast model for low-contrast image)
showed that using a model trained on high-contrast images for
segmenting low-contrast test images works better. In addition,
liver is well segmented in middle to high α ranges. Spleen
is segmented best at α=0.6. Kidneys work best in matched
training and test conditions. This suggests that there is an
optimal α for each organ for image segmentation.

The weight α for the mixed image calculation is currently a
user-defined parameter in the preprocessing in our approach.
The fact suggests that the alpha shall be regarded as organ
specific parameter in the network and optimized in the
training phase. It can be used to augment the data for the
training in future. Also, the network could be modified with
two image inputs. Furthermore, more organs and more scans
from different patients could be used.
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