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Abstract—Labeling data for hyperspectral remote sensing
image classification is a tedious and cost-intensive task. As a
consequence, it is oftentimes necessary to perform classification
when only very limited number of labeled training data is
available. Several approaches have been proposed to address this
problem. A recent proposal is to generate additional synthetic
samples from a Gaussian Mixture Model for each class. One
challenge with this approach lies in determining the number of
components in the GMM.

In this paper, we propose an approximation algorithm to select
the number of components, namely Variational Bayesian (VB).
The main advantage of VB is that it does not require multiple
clustering computations in advance. Variational Bayesian not
only greatly decreases the computational cost, but also generates
comparable or better results in comparison to other methods.

Index Terms—Gaussian mixture model (GMM), Variational
Bayesian (VB), synthetic data, hyperspectral remote sensing
image classification, limited training data

I. INTRODUCTION

Hyperspectral remote sensing (HSRS) is used in many
application fields, including agriculture, mineralogy, surveil-
lance, astronomy and environmental monitoring [1]. For these
applications, one of the most common objectives is to identify
objects or materials from their spectral and spatial signature.
Identifying objects or materials for remote sensing can be
done via classification. Two notorious challenges in HSRS
image classification are the high dimensionality of feature data
and the limited availability of training data. Both challenges
together make HSRS image classification a difficult task.

Several approaches have been proposed to address this task
which can be roughly categorized into two groups. The first
category focuses more towards developing robust classifiers
to limited training data, e.g., [2]–[4]. The second group,
concentrates on reducing the feature dimensionality since the
high dimensional features in the presence of limited data can
be a more severe bottleneck, e.g. [5]–[7].

A recently proposed approach opens another direction to
address the limited training data bottleneck [8] by adding syn-
thetically generated training samples. The approach is to fit a
Gaussian Mixture Model (GMM) to the few available training
samples, and then to augment the trainingset with samples
drawn from the GMM. While the overall idea is interesting,
its processing pipeline is somewhat prototypical. A specific
difficulty lies in finding a good GMM parameterization. Here,
the authors compute four Gaussian mixture models (GMMs),
consisting of one, two, three, and four components. Akaike
information criterion (AIC) [9] is then used to decide for one

of these models, or in other words, to determine the number of
GMM components to use. This approach is somewhat heuristic
in capping the maximum number of components at four, and
inelegant in that it requires computation of all models to find
the best model with respect to its AIC.

Variations of the proposed approach to determine the num-
ber of clusters might for example consider the Bayesian
information criterion (BIC) [10], or more complex approaches.
For example, Celeux et al. [11] determine the number of
mixtures from an entropy criterion which is derived from
a relation, combining the likelihood and the classification
likelihood of a mixture. Laxhammar et al. [12] estimated
the number of mixtures using a holdout method to detect
overfitting. Other approaches to determine the number of
mixtures aim at optimizing a function of inter-cluster and
intra-cluster distances, like the elbow method or the average
silhouette width [13], [14]. Tibshirani et al. [15] proposed
the gap statistic which is based on the within intra-cluster
variation for different numbers of clusters. However, the main
drawback with all the aforementioned methods is, analogously
to AIC, that the clustering algorithm needs to be computed
several times a priori and the computed models need to be
evaluated based on a certain criterion which makes this process
expensive and time-consuming.

In this work, we propose to address this issue by implicitly
adjusting the number of clusters with a Variational Bayesian
(VB). Dirichlet Process (DP) have previously been used for
this task for farm environmental estimation [16] and flame
detection [17]. Williams et al. [18] used Variational Bayesian
(VB) to estimate a GMM for small training sets. In a similar
spirit, we investigate in this work VB for generation of GMMs
and fast extraction of synthetic samples for hyperspectral
remote sensing image classification. One particular benefit
over the aforementioned methods is that the computational
complexity is independent from the number of components to
examine. This allows to not only consider four components,
but an arbitrary number. While being more flexible, VB is
almost twice as fast as AIC and BIC, eight times faster than
the average silhouette width method and in the magnitude of
hundreds times faster than the gap method, while yielding at
least comparable, oftentimes better classification performance.

The rest of this paper is organized as follows. In Sec. II, we
introduce the Variational Bayesian. In Sec. III, we present our
workflow, and in Sec. IV the experimental setup and results.
Section V concludes the paper.



II. VARIATIONAL BAYESIAN INFERENCE FOR GMM

Variational Bayesian (VB) can be considered as a family
of methods that makes the computation of probability distri-
butions tractable. VB methods are an extension of the EM
algorithm that maximizes a lower bound on model evidence
p(X) where X denotes the set of observations. Variational
methods and EM are both iterative algorithms which alternate
between a) determining the probabilities for a data point to
belong to a mixture component and b) to fit the mixture
to the corresponding data. However, variational methods add
regularization by integrating information from prior distri-
butions. A particularly nice property of VB over maximum
likelihood GMM is that VB methods avoid over-fitting and
singularities [19].

Given an observation x, a Gaussian mixture model can be
written as

p(x|µ,Λ,π) =

K∑
k=1

πkN (x|µk,Λk) (1)

where µk and Λk are the mean and covariance matrix of the
k-th Gaussian component, πk is the mixing coefficient, and
K is the number of mixture components.

Assume that the N observations are introduced as X =
{x1, ..., xN}, and the latent variables as Z = {z1, ..., zN}.
Probabilistic formulation of VB becomes easier when the
membership of the GMM components is made explicit. To
this end, each observation xi has an associated latent indi-
cator variable zi. Then, p(X) is the marginal distribution of
p(X,Z), i.e.,

p(x) =
∑
z

p(z)p(x|z) =

K∑
k=1

πkN (x|µk,Λk) , (2)

where we omitted for clarity of notation the dependency on
the model parameters µ, Λ, and π.

Consider a variational distribution which factorizes into
latent variables and model parameters as

q(Z,π,µ,Λ) = q(Z)q(π,µ,Λ) . (3)

This factorization is the only assumption required in order to
acquire a tractable and useful result for the mixture model.
Considering the expectation maximization (EM), q(Z) is esti-
mated in the expectation and q(π,µ,Λ) in the maximization
step. Both can be determined automatically by optimizing the
variational distribution. For the full theoretical derivation we
refer to [19, Chap. 10] due to space constraints. We will restrict
the exposition here to the required EM update equations. For
the expectation, the update is

q∗(Z) = E[znk] = rnk , (4)

where rnk denotes the “responsibility” of component k to
sample n, which will be defined in Eqn. 15 further below.
Let furthermore

Nk =

N∑
n=1

rnk (5)

x̄k =
1

Nk

N∑
n=1

rnkxn (6)

Sk =
1

Nk

N∑
n=1

rnk(xn − x̄k)(xn − x̄k)T (7)

denote three auxiliary statistics derived from rnk, namely the
number of assigned samples, average and covariance. The
update equations for the maximization step are based on the
factorization

q(π,µ,Λ) = q(π)

K∏
k=1

q(µk,Λk) . (8)

The individual terms are

q?(π) = Dir(π|α) , (9)

where Dir denotes the Dirichlet distribution as a prior for the
mixture weights, and αk = α0 +Nk.

The second factor of Eqn. 8 is represented as a product of
a Gaussian distribution N and a Wishart distribution W ,

q∗(µk,Λk) = N (µk|mk, (βkΛk)−1)W(Λk|Wk,νk) (10)

where

βk = β0 +Nk (11)

mk =
1

βk
(β0m0 +Nkx̄k) (12)

W−1
k = W−1

0 +NkSk +
β0Nk

β0 +Nk
(x̄k −m0)(x̄k −m0)T

(13)
νk = ν0 +Nk (14)

denote the remaining parameters for the maximization step.
Finally, the responsibilities rnk are computed as

rnk ∝ π̃kΛ̃
1/2
k exp{− D

2βk
− νk

2
(xn−mk)TWk(xn−mk)} ,

(15)
where D denotes the feature dimensionality. Eqn. 15 makes
use of the expectation

Eµk,Λk
[(xn − µk)Tλk(xn − µk)]

= Dβ−1
k + νk(xn −mk)TWk(xn −mk) (16)

and the expectations

ln Λ̃k ≡ E[ln |Λk|] (17)
ln π̃k ≡ E[ln πk] (18)



with

ln Λ̃k =

D∑
i=1

ψ

(
νk + 1− i

2

)
+D ln 2 + ln |Wk| (19)

ln π̃k = ψ(αk)− ψ(
∑
k

(αk)) , (20)

where ψ(·) denotes the digamma function. The EM equations
are iteratively evaluated analogously to the standard EM
algorithm [19].

III. WORKFLOW

The main processing and classification pipeline in this paper
is similar to previous work [8]. First, a standard dimensionality
reduction method, namely principal component analysis (PCA)
is used to reduce the spectral dimensionality of the HSRS im-
ages. Then, extended morphological attribute profiles (EMAP)
is computed as a feature vector. To reduce the dimensionality
again, PCA and non-parametric weighted feature extraction
(NWFE) [20] are applied as two variants. Next, we fit a GMM
to each class and sample from it so that we can generate
the synthetic data. Then, the low-dimensional samples are
classified with random forests.

The main contribution of this work comes in the GMM
fitting block. In order to speed up the GMM computation and
make it memory efficient, we use Variational Bayesian method
to determine the number of GMM components automatically.
As mentioned before, the main advantage of this method is that
it does not need many GMMs to be generated a posteriori.

IV. EXPERIMENTAL SETUP AND RESULTS

Similar to [8], we used two commonly used hyperspectral
datasets, namely Pavia Centre and Salinas, which are acquired
by ROSIS and AVIRIS sensors, respectively. These datasets
are high dimensional. In order to reduce their dimensionality,
first, PCA is performed on input data. Then, for both datasets,
EMAP is computed on the principal components. For the
Pavia Centre dataset, the threshold values of the attributes are
similar to [21]. For Salinas dataset, the threshold values are
selected similar to [22]. Later, the dimensionality of EMAP
data is reduced in one variant with PCA and in another with
NWFE to test the effect of both unsupervised and supervised
dimensionality reduction algorithms on the results. PCA and
NWFE are performed such that 99.9% of the variance is
preserved.

For the GMMs, the covariance matrix is constrained to
be diagonal. As for the AIC, BIC, average silhouette width
and gap methods, we constrain K between 1 and 4 and let
these algorithms choose the best model. AIC, BIC, average
silhouette width and gap methods are implemented using the
Statistics and Machine Learning Toolbox in MATLAB. VB
results are obtained via Pattern Recognition and Machine
Learning Toolbox (PRMLT) [23] in MATLAB. As mentioned
in Section II, we prefer to have a large initial number of
components (K). Therefore, K is selected to be 25. Number
of synthetic samples, generated to populate the limited training
data is 5000 samples per each class for all the experiments.

TABLE I
PERFORMANCE FOR DIFFERENT CASES USING PAVIA CENTRE DATASET.

Algorithm pix per class AA% (±SD) OA% (±SD) Kappa (±SD) Run time (s) (±SD)
PCA

AIC 13 85.17 (±1.21) 93.39 (±1.44) 0.9072 (±0.0197) 0.0877 (±0.0115)
30 88.52 (±0.71) 94.68 (±0.51) 0.9252 (±0.0070) 0.0978 (±0.0054)

BIC 13 85.50 (±1.14) 93.67 (±0.82) 0.9110 (±0.0114) 0.0781 (±0.0017)
30 88.23 (±1.06) 94.81 (±0.46) 0.9270 (±0.0064) 0.0856 (±0.0025)

avg. silhouette 13 85.10 (±1.27) 93.64 (±1.03) 0.9105 (±0.0142) 0.2013 (±0.0082)
30 87.61 (±1.14) 94.68 (±0.32) 0.9251 (±0.0045) 0.3521 (±0.0223)

gap 13 83.14 (±1.87) 92.23 (±1.00) 0.8911 (±0.0138) 16.4766 (±0.1400)
30 85.87 (±2.62) 93.54 (±1.03) 0.9091 (±0.0145) 35.4273 (±0.2511)

VB 13 85.60 (±0.62) 93.52 (±0.40) 0.9090 (±0.0055) 0.0324 (±0.0030)
30 89.14 (±0.46) 95.15 (±0.42) 0.9317 (±0.0059) 0.0450 (±0.0029)

NWFE

AIC 13 87.72 (±1.96) 94.75 (±0.96) 0.9260 (±0.0133) 0.0788 (±0.0043)
30 91.86 (±1.05) 96.41 (±0.53) 0.9493 (±0.0074) 0.0895 (±0.0037)

BIC 13 89.84 (±0.90) 95.65 (±0.66) 0.9387 (±0.0092) 0.0785 (±0.0044)
30 91.98 (±0.53) 96.50 (±0.45) 0.9506 (±0.0063) 0.0884 (±0.0038)

avg. silhouette 13 88.83 (±0.99) 95.00 (±0.61) 0.9297 (±0.0084) 0.2136 (±0.0103)
30 91.30 (±0.78) 96.28 (±0.64) 0.9476 (±0.0089) 0.3817 (±0.0377)

gap 13 89.08 (±0.83) 95.30 (±0.61) 0.9338 (±0.0084) 17.5375 (±0.1385)
30 90.75 (±1.16) 96.01 (±0.61) 0.9437 (±0.0084) 39.1785 (±0.5053)

VB 13 89.60 (±1.37) 96.11 (±0.53) 0.9404 (±0.0075) 0.0328 (±0.0023)
30 91.55 (±0.62) 96.43 (±0.47) 0.9469 (±0.0065) 0.0471 (±0.0026)

TABLE II
PERFORMANCE FOR DIFFERENT CASES USING SALINAS DATASET.

Algorithm pix per class AA% (±SD) OA% (±SD) Kappa (±SD) Runtime (s) (±SD)
PCA

AIC 13 91.01 (±0.87) 83.90 (±1.61) 0.8214 (±0.0175) 0.1430 (±0.0060)
30 92.55 (±0.31) 85.80 (±0.91) 0.8425 (±0.0098) 0.1686 (±0.0069)

BIC 13 90.40 (±0.85) 83.00 (±2.02) 0.8115 (±0.0222) 0.1391 (±0.0071)
30 92.68 (±0.55) 85.93 (±1.45) 0.8440 (±0.0158) 0.1646 (±0.0065)

avg. silhouette 13 90.50 (±0.72) 82.76 (±1.31) 0.8092 (±0.0141) 0.4293 (±0.0159)
30 92.14 (±0.42) 85.35 (±1.29) 0.8374 (±0.0140) 0.7702 (±0.0418)

gap 13 90.01 (±1.08) 81.66 (±1.69) 0.7973 (±0.0183) 38.9433 (±0.6351)
30 91.49 (±0.87) 84.27 (±1.82) 0.8258 (±0.0199) 81.9563 (±0.8802)

VB 13 91.02 (±0.87) 84.07 (±1.60) 0.8235 (±0.0175) 0.0579 (±0.0044)
30 92.59 (±0.55) 86.00 (±1.01) 0.8447 (±0.0110) 0.0802 (±0.0051)

NWFE

AIC 13 92.46 (±1.08) 85.93 (±2.33) 0.8435 (±0.0254) 0.1491 (±0.0049)
30 94.38 (±0.51) 88.42 (±1.30) 0.8715 (±0.0142) 0.1734 (±0.0096)

BIC 13 93.22 (±0.60) 86.99 (±1.28) 0.8557 (±0.0140) 0.1493 (±0.0051)
30 94.33 (±0.30) 88.90 (±0.64) 0.8767 (±0.0070) 0.1660 (±0.0058)

avg. silhouette 13 93.02 (±0.57) 85.84 (±1.96) 0.8430 (±0.0213) 0.3710 (±0.0184)
30 93.95 (±0.44) 87.30 (±1.65) 0.8591 (±0.0179) 0.6242 (±0.0246)

gap 13 92.98 (±0.62) 86.60 (±1.05) 0.8514 (±0.0115) 30.4463 (±0.5223)
30 94.05 (±0.42) 87.93 (±1.13) 0.8659 (±0.0124) 65.7990 (±1.5273)

VB 13 93.26 (±0.67) 87.05 (±1.03) 0.8562 (±0.0112) 0.0610 (±0.0070)
30 94.09 (±0.55) 88.30 (±1.31) 0.8700 (±0.0144) 0.0818 (±0.0024)

For the classification purpose, we employed the random
forest classifier. As suggested by Breiman [24], the number
of trees are set to 100 and the number of variable is adjusted
to be the square root of the number of data variables. The
training samples are selected randomly as 13 and 30 pixels per
class. Each experiment is repeated 10 times. The quantitative
evaluation is reported using the mean of the Overall Accuracy
(OA%), Average Accuracy (AA%), Kappa [25], the average
runtime and their standard deviations in the 10 repetitions.
The runtime demonstrates the average duration to estimate the
optimum number of components in ten iterations and fitting
GMM to the training data.

The quantitative evaluation results are demonstrated in
Table I and Table II for Pavia Centre and Salinas data sets,
respectively. Considering the classification performance, in all
the cases using VB generates similar, if not better, results.
Besides, in most cases the standard deviation is generally
lower for Variational Bayesian, which indicates the more
accurate underlying data distribution approximation by VB.

Focusing on the runtime, it can be observed that VB is in
average almost two times faster than the AIC and BIC and
eight times faster than the average silhouette width method.



(a) (b)

Fig. 1. Runtimes in seconds for (a) Pavia Centre and (b) Salinas.

These timing differences are visualized in the diagram in Fig.
1. The gap method is by about two orders of magnitude slower
than the other methods, and therefore is not shown in the plot.
Furthermore, we conducted the statistical Wilcoxon signed
rank test on both the classification accuracies and the runtimes.
Based on this test, the runtime of VB is significantly different
(lower) than the other methods while the classification accura-
cies using all these methods are not statistically significantly
different. Since AIC, BIC, silhouette and gap methods select
among different models, there is a need to create multiple
GMMs, which is not the case for VB. This is the main reason
for the big runtime advantage of the Variational Bayesian.

V. CONCLUSION

One of the most challenging problems in HSRS image
classification is the limited availability of labeled data which
is tackled by various methods in the literature. In previous
work [8], it was proposed to populate the small training data
with GMM-based synthetic samples. However, determining
the optimal number of components in a GMM is challenging.

In this work, we used Variational Bayesian, which deter-
mines the number of mixtures in a GMM by an iterative
procedure. We compared the performance of VB with other
known methods for determining the number of components,
i.e. AIC, BIC, average silhouette width and gap. The quan-
titative results show that VB yields similar, if not better,
performance compared to the other methods. The results using
VB are generally more consistent as well. More importantly,
Variational Bayesian does not need the clustering algorithm to
be executed in advance. This makes the VB memory efficient
and drastically reduces the computational cost.
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