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GMM-Based Synthetic Samples for Classification of
Hyperspectral Images with Limited Training Data

AmirAbbas Davari, Erchan Aptoula, Berrin Yanikoglu, Andreas Maier, Christian Riess

Abstract—The amount of training data that is required to train
a classifier scales with the dimensionality of the feature data.
In hyperspectral remote sensing, feature data can potentially
become very high dimensional. However, the amount of training
data is oftentimes limited. Thus, one of the core challenges
in hyperspectral remote sensing is how to perform multi-class
classification using only relatively few training data points.

In this work, we address this issue by enriching the feature
matrix with synthetically generated sample points. This synthetic
data is sampled from a GMM fitted to each class of the limited
training data. Although the true distribution of features may
not be perfectly modeled by the fitted GMM, we demonstrate
that a moderate augmentation by these synthetic samples can
effectively replace a part of the missing training samples. Doing
so, the median gain in classification performance is 5% on two
datasets. This performance gain is stable for variations in the
number of added samples, which makes it easy to apply this
method to real-world applications.

Index Terms—hyperspectral remote sensing image classifica-
tion, limited training data, synthetic data

I. INTRODUCTION

REMOTE sensing is of importance for many applica-
tions, including environmental monitoring, urban plan-

ning, ecosystem-oriented natural resources management, urban
change detection and agricultural region monitoring [1]. In
particular, hyperspectral remote sensing (HSRS) uses data with
a high spectral resolution. The task of HSRS classification is
the construction of a label map of remotely sensed images
in which individual pixels are marked as members of specific
classes like water, asphalt, or grass. The decision for the region
type that is seen in a pixel is typically made by a classifier.

Labeling the remote-sensing data at pixel-level for super-
vised classification is typically quite expensive and time-
consuming. One example consequence of this is that many
publicly available datasets contain ground-truth labels for only
few pixels per class.

Current work that addresses the limited training data HSRS
image classification can be roughly divided into two cate-
gories. In the first category the aim is to develop classifiers
that are more robust to limited training data, e.g., [2], [3],
[4], [5], [6], [7]. In the second category, the aim is to reduce
the feature dimensionality since the limited data problem is
less severe in lower-dimensional spaces, e.g. [8], [9], [10],
[11], [12], [13]. While dimensionality reduction methods have
been proven to be useful in many different problems, current
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methods are highly challenged in extreme cases, i.e., when
training data is severely limited. For example, when reducing
the number of training samples per class from 40 to 13, the
average accuracy for a standard pipeline that computes PCA,
then extended multi-attribute profiles (EMAP) features, then
PCA again drops on the Pavia Centre dataset from about 84%
to about 74%.

Probably any machine learning method can benefit from
augmentation techniques. However, this typically requires a
very accurate model in order to work. If the model is not good
enough, transfer learning techniques [14] yield significant
improvements. If better simulations can be carried out, it may
be possible to apply successive labeling [15]. We observed that
it is possible to adapt the data to the classifier by augmenting
the data with synthetic samples. We noted this option in a
conference paper [16], but a thorough examination is still
missing. We report that adding synthetic data yields excellent
results at a very low computational cost.

This paper is organized as follows. In Sec. II, we briefly
review the related work on the remote-sensing limited-data
classification. The explored approach is detailed in Sec. III.
Next, Sec. IV presents the conducted experiments and their
results, and puts them in perspective with other works. Finally,
Sec. V concludes the paper.

II. RELATED WORK

To our knowledge, only few methods have been proposed
to extend the feature space by synthetic samples for HSRS
classification. Skurichina et al. proposed to inject Gaussian
noise in the direction of the k nearest neighborhood of
the training data (k-NN DNI) [17]. Neagoe et al. proposed
virtual sample generation using the weights of concurrent self-
organizing maps (CSOM) [18].

There exist several recent works on generative adversarial
networks (GANs) for synthetic data generation [19], [20].
However, GANs require huge amounts of data, and are thus
not applicable to severely limited training data.

Related work on HSRS limited data classification is orga-
nized into robust classification schemes and dimensionality
reduction methods. For robust classification, early works use
a Gaussian maximum likelihood estimator [2], [3]. However,
limited training data leads to inaccurate estimation of the
Gaussian means and covariances. This is addressed by modi-
fying the covariance matrix estimation.

Bruzzone et al. proposed to introduce transductive and
inductive functions as controlling units on the SVM outputs
to select semi-labeled training data [4]. Chi et al. modified
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a support vector machine (SVM), and performed gradient
descent and a Newton-Raphson optimization on its primal
representation [5]. Recently, Xia et al. proposed a novel
ensemble approach called rotation-based SVM (RoSVM) [6],
using random feature selection to diversify the classifier.
Compared to standard SVM, this approach performs better
on limited training data, but it is computationally expensive.
Li et al. proposed a classification framework based on in-
tegrating multiple linear and non-linear features, including
EMAP [7] into a more effective classifier.

Dimensionality reduction (DR) is widely used in hyper-
spectral remote sensing image classification to reduce the
number of spectral channels, thereby directly addressing the
Hughes phenomenon. Principle component analysis (PCA)
and independent component analysis (ICA) are two common
choices in the literature.

In a recent work by Kang et al. [21], PCA is used to reduce
the dimensionality of edge preserving features (EPFs) prior
to classification. It was shown that the combination of EPF
and PCA results in a powerful feature vector. Sofolahan et al.
proposed an algorithm named summed component analysis
that uses PCA and principle feature analysis (PFA) [8]. PFA
selects a subset of the features, which in contrast to PCA and
ICA allows to physically interpret the reduced features.

Supervised DR makes use of labeled data during DR.
Some of the most popular approaches are non-parametric
weighted feature extraction (NWFE) [9], discriminant analysis
feature extraction (DAFE) [10], and decision boundary feature
extraction (DBFE) [11]. These approaches were shown to
perform equally well or better than unsupervised reduction
techniques, and to boost classification performance when used
in combination with the unsupervised techniques [12]. The
common idea behind these algorithms is reduce the data
dimensionality while optimizing the interclass and intraclass
distances in the lower dimension. Particularly for NWFE, it has
been shown to outperform the more classical LDA in cases
of limited training data [13]. Recently, Kianisarkaleh et al.
proposed nonparametric feature extraction (NFE) [13] for
limited training data. It is similar to NWFE, but uses k
neighbors in a class to compute the local class mean.

III. ADDITION OF SYNTHETIC DATA FOR CLASSIFICATION

A high-level overview of the proposed method is shown in
Fig. 1. We use a standard dimensionality-reduction workflow.
Spectral bands are reduced via PCA, and extended multi-
attribute profiles (EMAP) [22] are computed as features.
These features are again subject to dimensionality reduction.
These low-dimensional descriptors are then classified. The
key contribution of the method is injected right before the
classification: we propose to populate the feature space more
densely with synthetic feature points. These feature points are
drawn from a Gaussian Mixture Model (GMM) that is fitted to
the training samples. A GMM from such limited training data
is necessarily only a coarse approximation of the underlying
distribution. Nevertheless, we show that it is well suited to
support the subsequent classification.

The parametrization of the standard pipeline follows dataset-
dependent recommendations from the literature, and is re-

Fig. 1: Proposed workflow.

ported in the experiments in Sec. IV. For the remainder of
this section, we expand on our core contribution, which is the
addition of synthetic data.

A GMM models the probability density function (PDF) as

p(x) =

k∑
i=1

wiN (x|µi,Σi) s.t.

k∑
i=1

wi = 1 , (1)

where x ∈ Rd denotes a d-dimensional sample, k is the
number of mixture components, wi, 0 ≤ wi ≤ 1, is the weight
of the i-th component, and N (x|µi,Σi) is the a posteriori
probability of x given the multivariate Gaussian distribution
with mean vector µi and covariance Σi.

The Gaussian mixture model is fully parameterized by the
coefficients wi, the mean vectors µi and the covariance matri-
ces Σi. Thus, the total number of parameters is k+ kd+ kd2

for k components of dimension d. When facing severely
limited data, there may not be enough samples available for
estimating a full covariance matrix. As a consequence, we
constrain the covariance matrices to diagonal matrices. Such a
linear combination of diagonal matrices is sufficient to model
correlation between dimensions [23], and the number of model
parameters greatly decreases to only k+kd+kd = k(1+2d).

To allow for some variability in the number of components
of each GMM model, we construct for each class four GMMs
with k = 1 to k = 4 components. The best fitting model is
determined using the Akaike information criterion [24], [25].

The GMM parameters are estimated using iterative
Expectation-Maximization (EM). To gain some robustness to
the choice of initial values, we use the k-means clustering
algorithm to provide reasonable initial values for the estimator,
where k is set to the selected number of components. We also
add a small value to the diagonal of the covariance matrices
to support the EM convergence.

IV. EVALUATION

The method is evaluated on the popular Pavia Centre and
Salinas datasets. The Pavia Centre dataset has been acquired
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by the ROSIS sensor in 115 spectral bands over Pavia, northern
Italy. 13 of these bands are removed due to noise and therefore
102 bands are used in this work. The scene image is 1096×715
pixels with a geometrical resolution of 1.3m. Salinas dataset
was acquired by AVIRIS sensor in 224 spectral bands over
Salinas Valley, California. 20 water absorption bands were
discarded and the remaining 204 bands are used in this work.
The image is 512 × 217 pixels with a geometrical resolution
of 3.7m.

The parameters of the workflow in Fig. 1 are chosen as fol-
lows: the PCA components preserve 99% of the total spectral
variance. EMAP is computed according to the literature, by
using four attributes and four thresholds λ per attribute [22],
[26]. More specifically, the thresholds for area of connected
components are chosen as λa = [100, 500, 1000, 5000], and
the thresholds for length of the diagonal of the bounding
box fitted around the connected components λd are chosen as
λd = [10, 25, 50, 100]. The thresholds for standard deviation
of the gray values of the connected components λs and the
moment of inertia λi are chosen differently per dataset [22],
[26], i.e., λs = [20, 30, 40, 50] and λi = [0.2, 0.3, 0.4, 0.5]
for Pavia Centre, and for Salinas λs = [20, 30, 40, 50] and
λi = [0.1, 0.15, 0.2, 0.25].

For the second dimensionality reduction, we use in one
variant PCA, and in another variant the supervised non-
parametric weighted feature extraction (NWFE) [9], [12] to
preserve 99% of the feature variance. While PCA considers
all classes equally, NWFE is supervised and uses the interclass
and intraclass separability as a criterion for dimensionality
reduction. On Pavia Centre, PCA and NWFE result in 7
and 6 feature dimensions, respectively. On Salinas, PCA and
NWFE result in 4 and 7 dimensions, respectively. In our
experiments, we use abbreviations to specify the used pipeline
configuration. We use either EMAP, EMAP-PCA, or EMAP-
NWFE to distinguish the use of no secondary dimensionality
reduction, PCA, or NWFE, respectively. For classification,
we use the random forest default parameters as proposed by
Breiman [27], i.e. H = 100 trees with a tree depth of the
square root of the feature dimension, D =

√
d, on EMAP-

NWFE, and report Kappa for different numbers of up to 5000
added synthetic samples. Each experiment is repeated 25 times
and the mean average accuracy (AA), overall accuracy (OA)
and Kappa along with their standard deviations are reported.

Figure 2 shows the performance in dependence on the
number of added synthetic samples, computed on the Pavia
Centre dataset. The left and right plots show the classification
performances using 13 and 40 training samples per class,
respectively. Adding only a few synthetic samples leads to
a jump in classification performance, for example from about
0.88 to about 0.94 for 13 samples. This performance gain is
quite stable with respect to the exact number of added samples,
i.e., it does not make much difference whether 500 or 5000
samples are added.

A full quantitative evaluation is performed on EMAP,
EMAP-PCA, and EMAP-NWFE which are computed on
Pavia Centre and Salinas dataset. Synthetic samples are only
added to the dimensionality-reduced features EMAP-PCA
and EMAP-NWFE, but not to the high-dimensional EMAP,

Fig. 2: Classification performance (kappa) vs. the number of
synthetic samples added to the original training set. Classifi-
cation is performed on EMAP-NWFE computed over Pavia
Centre dataset. Red line represents the performance of raw
EMAP without any synthetic sample addition.

because GMM parameters can not reliably be estimated from
very few samples in very high dimensional spaces. Repre-
sentative results are shown in Table I, further results are
shown in the supplemental material. The per-class perfor-
mances for Pavia Centre and Salinas datasets are listed in
Table II and Table III, respectively. The addition of synthetic
samples consistently improves the classification performance.
Table I allows for two more observations. First, the addition
of synthetic samples not only outperforms EMAP-PCA and
EMAP-NWFE, but also it results in higher performance than
the raw non-reduced EMAP. Second, adding synthetic samples
reduces the standard deviation of the classification results. This
is particularly interesting, as randomly drawn samples can the-
oretically also fall in confusion areas at class boundaries, and
that way potentially worsen the classifier. It might theoretically
also happen that inaccuracies in the drawn samples lead to
a bad model, that worsens the classifier. However, from the
consistently low standard deviation, we empirically conclude
that this is not an issue in practice.

We confirmed these findings also for 20 and 30 training
samples per class, and we also repeated and confirmed all
experiments with SVM classifier (see supplemental material).
Kappa improves on average by 5.84 percent after adding
synthetic samples to the training set, with a standard deviation
of 3.18. We also evaluated the pipeline on the dimensionality
reduced raw hyperspectral datasets without computing EMAP.
Analogously to the results on EMAP, adding synthetic samples
has positive impact on the classification performance. These
results are in Table XIV and Table XV of the supplementary
material.

We also compared the proposed method for addition of syn-
thetic samples to other methods that generate synthetic sam-
ples [17], [18]. We denote the method by Skurichina et al. [17]
as k-NN DNI, and the method by Neagoe et al. [18] as CSOM.
The proposed method outperforms both CSOM and k-NN
DNI in all evaluated scenarios. For example, for EMAP-PCA
computed on Pavia Centre, our Kappa is almost 3% and 7%
higher than CSOM and k-NN DNI, respectively. The detailed
results are listed in Table XVI. of the supplementary material.

The addition of synthetic data is also competitive with other
methods reported in the literature. For example, the results
by Kianisarkaleh et al. [13] on limited training samples on
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the Salinas dataset are very comparable to ours. Li et al. [7]
also recently proposed a framework to operate on very limited
datasets. The overall accuracy (OA) of their results reported
on Pavia Centre dataset for 20, 30, and 40 training samples is
slightly higher than our OA. However, their reported average
accuracy is comparable to our performance, and the kappa
values of our approach are in all cases considerably higher.
Aptoula et al. [28] use deep learning for classification. Their
kappa on Pavia Centre for the full spectral dataset is 0.952,
which is very close to the random forest performance EMAP-
NWFE-Synth kappa of 0.9528 for 40 samples. Deep learning
on area and moment attribute profiles yielded a best-case
kappa of 0.983, which is better than our results. However,
in all cases, their methods operate on a training set that is,
depending on the class, six to 14 times larger than ours.
Tao et al. use a deep autoencoder to learn the features for
hyperspectral image classification [29]. In a feature transfer
task, they report on Pavia Centre a kappa of 0.9699 using
50 samples from the dataset, which is somewhat higher than
our EMAP-NWFE-Synth on 40 samples (0.9528). However,
key to their strong performance is to first learn a sophisticated
feature representation from the Pavia University dataset using
a considerably higher number of samples. In future work, it
would be interesting to investigate whether their feature rep-
resentation can also benefit from additional synthetic samples.

Furthermore, we run our pipeline on Pavia University
dataset in order to quantitatively compare our work with a
recent work on limited training data by Xia et al. [6]. Our
[OA,AA] = [79.52, 84.78] on 13 pixels per class training
set size, computed on the EMAP-PCA is higher than their
best result using 30 pixels per class training set size, i.e.
[76.06, 82.67] and almost equal to their result on 40 pixels
per class training set, i.e. [77.12, 85.12] (for the full results,
see Table III of the supplemental material).

All in all, it is encouraging that our proposed approach is
able to achieve a performance that comes close to a deep
learning architecture, which may be very useful in scenarios
where there is not the significant amount of training data
available that is required to train a deep network.

Fig. 3 shows the selected random forest label maps on
Salinas dataset variations with and without adding synthetic
samples. The synthetic samples improve the classification
accuracy and avoid some misclassification. This improvement
can best be observed in the large homogeneous regions. Label
maps for the other datasets, and on pixels without ground truth
are in Fig. 3 to Fig. 7 in the supplemental material.

Our MATLAB implementation is executed on a desktop PC
with a quad-core Intel Core i7-4910MQ CPU with 2.9 GHz
and 32 GB RAM. We report the runtime for generating, adding
and classifying 5000 synthetic samples. It turns out that our
method is computationally cheap. For example, for EMAP-
PCA on Pavia Centre, it takes 0.68 s to generate, add and
classify the synthetic samples. For EMAP-PCA on Salinas
dataset, the process takes 1.1 s.

V. CONCLUSION

A common issue in hyperspectral remote sensing image
classification is the limited training data, particularly when

TABLE I: Classification performance computed over Pavia
Centre and Salinas. |S| denotes the number of added synthetic
samples per class, “-” indicates that no samples are added.

Algorithm |S| AA% (±SD) OA% (±SD) Kappa (±SD)
Pavia Centre
13 pix/class

EMAP - 77.87 (±2.97) 90.01 (±3.78) 0.8600 (±0.0495)
EMAP-PCA - 73.51 (±3.00) 86.38 (±3.61) 0.8089 (±0.0493)
EMAP-PCA 500 84.59 (±1.58) 93.67 (±0.75) 0.9107 (±0.0104)
EMAP-NWFE - 80.06 (±3.56) 91.37 (±2.67) 0.8787 (±0.0365)
EMAP-NWFE 500 89.57 (±1.15) 95.91 (±0.49) 0.9423 (±0.0069)

40 pix/class
EMAP - 86.80 (±1.47) 94.30 (±0.61) 0.9197 (±0.0086)
EMAP-PCA - 83.98 (±1.18) 93.49 (±0.69) 0.9082 (±0.0096)
EMAP-PCA 500 88.74 (±0.96) 95.09 (±0.54) 0.9307 (±0.0076)
EMAP-NWFE - 87.41 (±1.41) 95.18 (±0.61) 0.9318 (±0.0085)
EMAP-NWFE 500 92.39 (±0.75) 96.66 (±0.46) 0.9528 (±0.0063)

Salinas
13 pix/class

EMAP - 83.84 (±2.06) 76.30 (±2.74) 0.7380 (±0.0292)
EMAP-PCA - 82.50 (±2.06) 74.96 (±3.63) 0.7230 (±0.0378)
EMAP-PCA 500 90.96 (±0.88) 83.89 (±1.72) 0.8215 (±0.0188)
EMAP-NWFE - 88.68 (±1.20) 80.42 (±2.34) 0.7838 (±0.0247)
EMAP-NWFE 500 93.17 (±0.68) 87.09 (±1.26) 0.8566 (±0.0138)

40 pix/class
EMAP - 90.75 (±0.86) 84.52 (±1.76) 0.8285 (±0.0192)
EMAP-PCA - 89.80 (±1.21) 81.73 (±2.51) 0.7981 (±0.0273)
EMAP-PCA 500 93.08 (±0.40) 86.59 (±0.85) 0.8512 (±0.0093)
EMAP-NWFE - 93.29 (±0.41) 86.09 (±1.86) 0.8462 (±0.0200)
EMAP-NWFE 500 94.52 (±0.30) 89.18 (±0.81) 0.8798 (±0.0089)

TABLE II: Class-wise performance computed over Pavia Cen-
tre dataset, with 500 synthetic samples per class.

Class Train/Test EMAP-PCA EMAP-NWFE
Water 13/65958 99.48 ± 0.37 99.71 ± 0.28
Trees 13/7585 72.09 ± 10.12 83.86 ± 7.19
Asphalt 13/3077 68.25 ± 9.92 82.25 ± 9.65
Self-Blocking Bricks 13/2672 72.08 ± 9.82 81.80 ± 6.29
Bitumen 13/6571 80.47 ± 7.48 80.84 ± 7.68
Tiles 13/9235 92.63 ± 4.17 96.39 ± 1.83
Shadows 13/7274 84.12 ± 5.49 86.01 ± 4.93
Meadows 13/42813 95.25 ± 2.04 98.19 ± 0.96
Bare Soil 13/2850 96.97 ± 2.06 97.08 ± 2.02

Average Accuracy 84.59 ± 1.58 89.57 ± 1.15
Overall Accuracy 93.67 ± 0.75 95.91 ± 0.49

Kappa 0.9107 ± 0.0104 0.9423 ± 0.0069

using high dimensional feature vectors. In this work, we
propose to compensate this limitation by adding synthetic
samples drawn from a Gaussian mixture that is estimated from
the limited samples.

We show on simulated data with non-Gaussian distributions
that this idea helps on severely limited training data, even if
the true underlying distribution is only approximately matched
(see supplemental material). On real data, the performance
gain on a standard dimensionality-reduction classification
pipeline is shown for the Pavia Centre, Pavia University
and Salinas datasets. Adding synthetic samples consistently
increases OA, AA and kappa coefficient, while the choice
for the exact number of added features is not critical. The
mean improvement in our experiments is 4.5%, with variations
between one percent and almost ten percent. These results are
encouraging, as the approach itself is quite straightforward,
and can be smoothly integrated into any classification pipeline.



5

TABLE III: Class-wise performance computed over Salinas
dataset, with 500 synthetic samples per class.

Class Train/Test EMAP-PCA EMAP-NWFE
Brocoli green weeds 1 13/1996 95.90 ± 5.47 98.05 ± 3.65
Brocoli green weeds 2 13/3713 95.57 ± 2.77 96.81 ± 3.98
Fallow 13/1963 88.82 ± 6.68 97.28 ± 3.35
Fallow rough plow 13/1381 99.42 ± 0.55 98.81 ± 1.65
Fallow smooth 13/2665 96.61 ± 1.15 94.95 ± 1.84
Stubble 13/3946 96.15 ± 2.04 98.24 ± 1.38
Celery 13/3566 99.41 ± 0.22 99.75 ± 0.05
Grapes untrained 13/11258 58.97 ± 8.98 62.10 ± 9.88
Soil vinyard develop 13/6190 95.79 ± 1.35 98.61 ± 0.86
Corn 13/3265 84.72 ± 4.90 89.49 ± 6.25
Lettuce romaine 4wk 13/1055 92.36 ± 4.35 95.11 ± 1.65
Lettuce romaine 5wk 13/1914 94.89 ± 4.78 99.52 ± 0.57
Lettuce romaine 6wk 13/903 97.85 ± 0.95 98.66 ± 0.65
Lettuce romaine 7wk 13/1057 91.65 ± 4.18 94.62 ± 2.08
Vinyard untrained 13/7255 67.55 ± 6.64 68.76 ± 8.80
Vinyard vertical trellis 13/1794 99.74 ± 0.35 99.97 ± 0.11

Average Accuracy 90.96 ± 0.88 93.17 ± 0.68
Overall Accuracy 83.89 ± 1.72 87.09 ± 1.26

Kappa 0.8215 ± 0.0188 0.8566 ± 0.0138

(a) (b) (c) (d) (e)

Fig. 3: Label maps on Salinas using 13 training samples
per class. (a) ground truth (b) EMAP-PCA, (c) EMAP-PCA
with 500 synthetic samples per class, (d) EMAP-NWFE, (e)
EMAP-NWFE with 500 synthetic samples per class.
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I. OVERVIEW

This document contains the full experimental results to
complement the results in the main text. We report results for
all combinations of the two considered datasets (Pavia Centre
and Salinas), two dimensionality-reduction methods (PCA and
NWFE), two classifiers (random forests and SVM) with the
purpose of either optimizing the classification parameters or
adding synthetic samples. For training the classifiers, we used
limited datasets of either 13, 20, 30, or 40 samples per class.

When considering an unoptimized random forest, default
parameters from the literature are used, i.e., H = 100 trees
with a tree depth of the square root of the feature dimension,
D =

√
d.

Furthermore, random forests are oftentimes used in the
literature with a default set of variables rather than optimized
parameters. We conducted each of the classification experi-
ments using two versions of the classifiers: optimized and
unoptimized. In our work, we denote a classifier as being
“unoptimized” if its parameters are taken from reported values
instead of being the results of a training protocol. In contrast,
optimized classifiers result from a parameter search. In this
document, we tabulate the full results to all of our experiments.

II. SIMULATED DATA

Since we are operating on limited training data, we consider
a GMM as a reasonable trade-off between the model com-
plexity and the expressiveness of the available samples. This
is illustrated with a small simulation experiment. We generate
three Gamma distributions with varying shape parameter a
and scale parameter b. These distributions are shown in
Fig. 1a. 1000, 2000 and 3000 samples are drawn from these
distributions to simulate a gamma distributed dataset. From
each dataset, 13 samples per class are randomly selected as the
training set, and a GMM is fitted to each of these classes (with
the same parametrization as for the real-world experiments
stated further below). Then, we sample 0 ≤ ns ≤ 1000
additional training samples from the estimated GMMs and
add these samples to the original training set. A random forest
classifier is trained on these a+13 samples. The parameters for
random forest were chosen the same as what is popularly used
in the hyperspectral remote sensing image analysis community,
i.e. 100 trees (H) and square root of number of features as the
maximum leaves depth (D), as in [1], [2], [3]. Fig. 1 shows
the Cohen’s kappa of the classification result in dependency
of the number of added samples ns. It can be seen that

(a) Gamma distributions (b) Kappa

Fig. 1: Simulation example on model accuracy versus classifier sup-
port: (a) three different gamma distributions serving as the simulated
data’s class distributions, (b) classification performance (kappa value)
vs. number of added synthetic samples drawn from the fitted GMM.

the addition of very few synthetic samples already boosts
classification performance. These performance gains remain
roughly stable for up to 1000 additional samples. The chosen
GMM model is not able to accurately represent the Gamma
distributions, which contributes to the fact that performance
never reaches the optimum. However, it is sufficiently accurate
to considerably improve the performance over the baseline
with 500 added samples.

III. RANDOM FOREST + SYNTHETIC SAMPLES

Tables I and II contain the classification results using the
unoptimized random forest classifier. In Tab. I, features are
computed over Pavia Centre dataset and reduced via PCA and
NWFE.

Analogously, Tab. II presents unoptimized random for-
est performance for features from EMAP, EMAP-PCA and
EMAP-NWFE, with and without synthetic samples, computed
over Salinas dataset. |S| represents the number of added
synthetic samples.

As it was mentioned in the main paper, to further evaluate
our idea and compare with other works, we conducted our
experiments on the commonly used Pavia University dataset.
Tab. III presents unoptimized random forest performance for
features from EMAP, EMAP-PCA and EMAP-NWFE, with
and without synthetic samples, computed over Pavia Univer-
sity dataset. |S| represents the number of added synthetic
samples.
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TABLE I: Unoptimized random forest-based classification
performance on Pavia Centre dataset with and without adding
synthetic features.

Algorithm |S| AA% (±SD) OA% (±SD) Kappa (±SD)
Pavia Centre
13 pix/class

EMAP - 77.87 (±2.97) 90.01 (±3.78) 0.8600 (±0.0495)
EMAP-PCA - 73.51 (±3.00) 86.38 (±3.61) 0.8089 (±0.0493)
EMAP-PCA 500 84.59 (±1.58) 93.67 (±0.75) 0.9107 (±0.0104)
EMAP-NWFE - 80.06 (±3.56) 91.37 (±2.67) 0.8787 (±0.0365)
EMAP-NWFE 500 89.57 (±1.15) 95.91 (±0.49) 0.9423 (±0.0069)

20 pix/class
EMAP - 81.80 (±2.07) 92.73 (±1.23) 0.8974 (±0.0171)
EMAP-PCA - 79.07 (±1.69) 90.89 (±1.22) 0.8717 (±0.0169)
EMAP-PCA 500 86.37 (±1.05) 94.16 (±0.47) 0.9178 (±0.0065)
EMAP-NWFE - 83.32 (±2.24) 93.28 (±1.30) 0.9053 (±0.0181)
EMAP-NWFE 500 90.68 (±1.05) 96.17 (±0.50) 0.9460 (±0.0070)

30 pix/class
EMAP - 85.57 (±1.29) 93.95 (±0.59) 0.9148 (±0.0082)
EMAP-PCA - 82.19 (±1.29) 92.97 (±0.75) 0.9008 (±0.0105)
EMAP-PCA 500 87.91 (±1.09) 94.75 (±0.48) 0.9260 (±0.0067)
EMAP-NWFE - 86.69 (±1.12) 94.89 (±0.74) 0.9279 (±0.0103)
EMAP-NWFE 500 91.70 (±0.90) 96.53 (±0.56) 0.9510 (±0.0078)

40 pix/class
EMAP - 86.80 (±1.47) 94.30 (±0.61) 0.9197 (±0.0086)
EMAP-PCA - 83.98 (±1.18) 93.49 (±0.69) 0.9082 (±0.0096)
EMAP-PCA 500 88.74 (±0.96) 95.09 (±0.54) 0.9307 (±0.0076)
EMAP-NWFE - 87.41 (±1.41) 95.18 (±0.61) 0.9318 (±0.0085)
EMAP-NWFE 500 92.39 (±0.75) 96.66 (±0.46) 0.9528 (±0.0063)

TABLE II: Unoptimized random forest performance on Salinas
dataset with and without adding synthetic features.

Algorithm |S| AA% (±SD) OA% (±SD) Kappa (±SD)
Salinas

13 pix/class
EMAP - 83.84 (±2.06) 76.30 (±2.74) 0.7380 (±0.0292)
EMAP-PCA - 82.50 (±2.06) 74.96 (±3.63) 0.7230 (±0.0378)
EMAP-PCA 500 90.96 (±0.88) 83.89 (±1.72) 0.8215 (±0.0188)
EMAP-NWFE - 88.68 (±1.20) 80.42 (±2.34) 0.7838 (±0.0247)
EMAP-NWFE 500 93.17 (±0.68) 87.09 (±1.26) 0.8566 (±0.0138)

20 pix/class
EMAP - 86.81 (±1.63) 79.74 (±2.56) 0.7756 (±0.0269)
EMAP-PCA - 86.59 (±1.06) 78.70 (±2.33) 0.7643 (±0.0249)
EMAP-PCA 500 91.76 (±0.97) 85.38 (±1.40) 0.8376 (±0.0154)
EMAP-NWFE - 90.56 (±1.26) 82.26 (±2.62) 0.8038 (±0.0280)
EMAP-NWFE 500 94.00 (±0.39) 88.28 (±1.01) 0.8697 (±0.0111)

30 pix/class
EMAP - 89.01 (±1.10) 81.80 (±2.30) 0.7985 (±0.0248)
EMAP-PCA - 88.85 (±0.91) 80.96 (±2.15) 0.7895 (±0.0229)
EMAP-PCA 500 92.63 (±0.47) 86.27 (±0.94) 0.8476 (±0.0103)
EMAP-NWFE - 92.25 (±0.82) 84.76 (±2.38) 0.8314 (±0.0256)
EMAP-NWFE 500 94.35 (±0.43) 88.74 (±1.24) 0.8748 (±0.0138)

40 pix/class
EMAP - 90.75 (±0.86) 84.52 (±1.76) 0.8285 (±0.0192)
EMAP-PCA - 89.80 (±1.21) 81.73 (±2.51) 0.7981 (±0.0273)
EMAP-PCA 500 93.08 (±0.40) 86.59 (±0.85) 0.8512 (±0.0093)
EMAP-NWFE - 93.29 (±0.41) 86.09 (±1.86) 0.8462 (±0.0200)
EMAP-NWFE 500 94.52 (±0.30) 89.18 (±0.81) 0.8798 (±0.0089)

IV. SVM + SYNTHETIC SAMPLES

Tab. IV shows the classification results of EMAP, EMAP-
PCA, EMAP-NWFE and variants thereof with added syn-
thetic samples, computed over Pavia Centre dataset, using an
unoptimized SVM classifier. Similarly, Tab. V exhibits the
unoptimized SVM results of the same features, but computed
over Salinas datasets.

TABLE III: Unoptimized random forest performance on Pavia
University dataset with and without adding synthetic features.

Algorithm |S| AA% (±SD) OA% (±SD) Kappa (±SD)
Pavia University

13 pix/class
EMAP - 70.50 (±2.88) 54.81 (±7.72) 0.4625 (±0.0734)
EMAP-PCA - 73.77 (±3.56) 65.59 (±8.52) 0.5726 (±0.0879)
EMAP-PCA 500 84.78 (±1.49) 79.52 (±2.98) 0.7376 (±0.0344)
EMAP-NWFE - 68.33 (±2.97) 62.90 (±6.89) 0.5369 (±0.0671)
EMAP-NWFE 500 82.87 (±1.09) 76.13 (±3.12) 0.6984 (±0.0340)

20 pix/class
EMAP - 75.93 (±2.00) 65.12 (±4.74) 0.5691 (±0.0467)
EMAP-PCA - 78.73 (±2.28) 74.87 (±5.94) 0.6768 (±0.0621)
EMAP-PCA 500 86.75 (±1.16) 82.24 (±3.13) 0.7717 (±0.0364)
EMAP-NWFE - 76.87 (±2.13) 72.13 (±7.01) 0.6466 (±0.0715)
EMAP-NWFE 500 83.96 (±1.20) 77.84 (±2.57) 0.7183 (±0.0291)

30 pix/class
EMAP - 79.63 (±1.56) 70.94 (±3.55) 0.6353 (±0.0375)
EMAP-PCA - 83.04 (±1.46) 77.76 (±4.75) 0.7156 (±0.0495)
EMAP-PCA 500 87.55 (±0.87) 83.05 (±2.29) 0.7818 (±0.0266)
EMAP-NWFE - 80.08 (±1.68) 75.16 (±4.95) 0.6819 (±0.0528)
EMAP-NWFE 500 85.61 (±0.83) 80.44 (±2.56) 0.7502 (±0.0296)

40 pix/class
EMAP - 81.72 (±1.52) 71.16 (±3.61) 0.6422 (±0.0379)
EMAP-PCA - 84.85 (±1.10) 79.71 (±3.42) 0.7392 (±0.0381)
EMAP-PCA 500 88.36 (±1.03) 83.72 (±2.27) 0.7907 (±0.0266)
EMAP-NWFE - 81.71 (±1.35) 76.47 (±4.36) 0.6996 (±0.0473)
EMAP-NWFE 500 86.07 (±0.93) 80.86 (±2.85) 0.7557 (±0.0329)

TABLE IV: Unoptimized SVM performance on Pavia Centre
with and without adding synthetic features. Parameters of
SVM are arbitrarily chosen to be C = 1 and γ = 5 for both
EMAP-PCA and EMAP-NWFE datasets.

Algorithm |S| AA% (±SD) OA% (±SD) Kappa (±SD)
Pavia Centre
13 pix/class

EMAP - 89.77 (±1.75) 95.37 (±0.89) 0.9348 (±0.0124)
EMAP-PCA - 75.11 (±2.21) 90.41 (±1.28) 0.8627 (±0.0188)
EMAP-PCA 500 87.01 (±1.08) 94.68 (±0.48) 0.9249 (±0.0067)
EMAP-NWFE - 77.27 (±1.69) 91.96 (±1.09) 0.8851 (±0.0157)
EMAP-NWFE 500 90.01 (±0.87) 95.32 (±0.35) 0.9341 (±0.0049)

20 pix/class
EMAP - 90.92 (±1.23) 96.27 (±0.52) 0.9473 (±0.0073)
EMAP-PCA - 78.45 (±1.42) 91.87 (±0.72) 0.8844 (±0.0105)
EMAP-PCA 500 87.51 (±1.42) 94.96 (±0.50) 0.9289 (±0.0071)
EMAP-NWFE - 78.91 (±1.49) 92.37 (±0.71) 0.8915 (±0.0102)
EMAP-NWFE 500 91.14 (±0.64) 95.74 (±0.29) 0.9400 (±0.0040)

30 pix/class
EMAP - 93.31 (±0.59) 97.01 (±0.37) 0.9578 (±0.0052)
EMAP-PCA - 80.79 (±1.71) 92.80 (±0.83) 0.8977 (±0.0119)
EMAP-PCA 500 89.05 (±0.39) 95.63 (±0.36) 0.9382 (±0.0049)
EMAP-NWFE - 82.63 (±1.23) 94.40 (±0.52) 0.9206 (±0.0073)
EMAP-NWFE 500 91.15 (±0.76) 96.41 (±0.09) 0.9493 (±0.0013)

40 pix/class
EMAP - 93.74 (±0.61) 97.05 (±0.43) 0.9584 (±0.0060)
EMAP-PCA - 83.52 (±1.38) 93.95 (±0.55) 0.9142 (±0.0078)
EMAP-PCA 500 88.83 (±0.83) 95.39 (±0.25) 0.9348 (±0.0035)
EMAP-NWFE - 83.52 (±0.98) 93.99 (±0.42) 0.9150 (±0.0060)
EMAP-NWFE 500 92.13 (±0.31) 96.42 (±0.31) 0.9495 (±0.0043)

V. CLASSIFIER PARAMETER SELECTION

When using, e.g., the support vector machine classifier
(SVM), it is widely known that parameter selection is a critical
preparatory step towards obtaining competitive results. This
is the reason why, for example, SVM parameter selection is
hardwired into the popular SVM implementation libSVM.
However, other classification frameworks do not necessarily
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TABLE V: Unoptimized SVM performance on Salinas with
and without adding synthetic features. Parameters of SVM are
arbitrarily chosen to be C = 1 and γ = 1 for EMAP-PCA
dataset and C = 1 and γ = 5 for EMAP-NWFE dataset.

Algorithm |S| AA% (±SD) OA% (±SD) Kappa (±SD)
Salinas

13 pix/class
EMAP - 89.47 (±1.13) 80.82 (±1.33) 0.7886 (±0.0146)
EMAP-PCA - 88.45 (±0.50) 79.60 (±1.95) 0.7749 (±0.0204)
EMAP-PCA 500 92.69 (±0.74) 85.74 (±1.94) 0.8420 (±0.0212)
EMAP-NWFE - 84.23 (±1.32) 75.21 (±3.23) 0.7266 (±0.0332)
EMAP-NWFE 500 93.21 (±0.69) 86.34 (±1.83) 0.8485 (±0.0202)

20 pix/class
EMAP - 91.17 (±0.66) 83.47 (±1.12) 0.8174 (±0.0123)
EMAP-PCA - 89.87 (±0.83) 83.00 (±1.74) 0.8119 (±0.0187)
EMAP-PCA 500 92.75 (±0.94) 85.90 (±1.63) 0.8438 (±0.0179)
EMAP-NWFE - 84.15 (±0.64) 75.91 (±2.12) 0.7346 (±0.0223)
EMAP-NWFE 500 93.96 (±0.29) 87.69 (±1.28) 0.8635 (±0.0140)

30 pix/class
EMAP - 92.31 (±0.54) 84.80 (±0.92) 0.8320 (±0.0100)
EMAP-PCA - 90.64 (±0.91) 82.06 (±2.23) 0.8021 (±0.0239)
EMAP-PCA 500 93.76 (±0.44) 87.63 (±0.70) 0.8628 (±0.0078)
EMAP-NWFE - 84.80 (±0.52) 75.20 (±2.31) 0.7270 (±0.0237)
EMAP-NWFE 500 93.94 (±0.32) 88.57 (±0.35) 0.8730 (±0.0039)

40 pix/class
EMAP - 92.88 (±0.45) 85.79 (±1.23) 0.8429 (±0.0134)
EMAP-PCA - 91.40 (±0.93) 83.60 (±2.47) 0.8190 (±0.0266)
EMAP-PCA 500 93.84 (±0.50) 87.67 (±1.25) 0.8632 (±0.0137)
EMAP-NWFE - 87.08 (±2.29) 78.00 (±4.44) 0.7580 (±0.0476)
EMAP-NWFE 500 94.13 (±0.33) 88.70 (±0.83) 0.8745 (±0.0092)

include a parameter selection submodule. One notable example
is classification with a random forest. Several works [4], [3],
[5], [6], [7], [8] rely on the default settings of 100 trees with
a tree depth equal to the square root of the feature dimension-
ality,

√
d, as originally proposed by Breiman [9]. However,

these parameters have been proposed based on training on a
relatively large dataset. In the case of classification on severely
limited training data, such default parameters yield suboptimal
classification performance.

To illustrate how far off the default parameters can be from
the optimum solution, we show two example results in Fig. 2.
A similar study for large training sets has been done by
Rodriguez-Galiano et al.[10]. We used limited training sets
of size 13 and 40, respectively. The features are extracted
from Pavia Centre dataset using PCA-reduced EMAP fea-
tures, and from Salinas dataset using NWFE-reduced EMAP
features, respectively. We color-code the kappa classification
performance for different random forest configurations, i.e.,
different numbers of trees and tree depths. In both examples,
considerably smaller number of trees perform significantly
better.

A. Optimized Parameters for Random Forest

Classification performance of optimized random forest clas-
sifier on EMAP and EMAP-reduced features computed over
Pavia Centre and Salinas dataset are shown in Tab. VI and
Tab. VII, respectively. The optimized parameters of random
forest, H and D, are also listed in the tables.
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Fig. 2: Random forest kappa performance using different
number of trees H and tree depths D. Left: Pavia-EMAP-PCA
with training set size of 13 pixels per class. Right: Salinas-
EMAP-NWFE with training set size of 40 pixels per class.

TABLE VI: Optimized random forest-based classification per-
formance on Pavia Centre dataset without adding synthetic
features. H and D represent the tuned parameters of random
forest.

Algorithm H D AA% (±SD) OA% (±SD) Kappa (±SD)
13 pix/class

EMAP 5 4 86.55 (±1.73) 93.99 (±1.11) 0.9154 (±0.0151)
EMAP-PCA 10 8 84.05 (±1.44) 92.67 (±0.82) 0.8970 (±0.0113)
EMAP-NWFE 10 4 87.38 (±1.04) 94.86 (±0.47) 0.9276 (±0.0066)

20 pix/class
EMAP 10 10 89.59 (±1.24) 94.94 (±0.76) 0.9289 (±0.0106)
EMAP-PCA 20 10 86.21 (±1.24) 93.80 (±0.53) 0.9128 (±0.0074)
EMAP-NWFE 20 2 88.01 (±0.97) 95.21 (±0.56) 0.9325 (±0.0079)

30 pix/class
EMAP 10 6 90.84 (±1.08) 95.60 (±0.62) 0.9381 (±0.0087)
EMAP-PCA 10 8 87.47 (±0.79) 94.22 (±0.38) 0.9187 (±0.0053)
EMAP-NWFE 20 4 90.16 (±0.92) 95.86 (±0.51) 0.9416 (±0.0072)

40 pix/class
EMAP 10 10 92.67 (±0.74) 96.03 (±0.73) 0.9441 (±0.0101)
EMAP-PCA 10 6 88.97 (±0.97) 94.84 (±0.67) 0.9274 (±0.0093)
EMAP-NWFE 20 2 90.90 (±0.96) 96.17 (±0.48) 0.9459 (±0.0068)

B. Optimized Parameters for SVM

Analogously to Sec. V-A, Tab. VIII and Tab. IX show
the classification results using an optimized SVM on Pavia
Centre and Salinas datasets, respectively. As SVM classifier
is by design a two class classifier, we use a one-versus-all
approach to multi-class classification. For classifier tuning,

TABLE VII: Optimized random forest-based classification per-
formance on Salinas dataset without adding synthetic features.
H and D represent the tuned parameters of random forest.

Algorithm H D AA% (±SD) OA% (±SD) Kappa (±SD)
13 pix/class

EMAP 5 10 91.54 (±1.06) 86.45 (±2.25) 0.8496 (±0.0250)
EMAP-PCA 10 6 89.29 (±1.10) 82.66 (±1.39) 0.8077 (±0.0153)
EMAP-NWFE 10 4 91.85 (±0.89) 85.21 (±1.18) 0.8357 (±0.0132)

20 pix/class
EMAP 5 10 93.10 (±0.93) 88.13 (±1.86) 0.8683 (±0.0206)
EMAP-PCA 10 10 90.68 (±0.73) 84.14 (±1.21) 0.8241 (±0.0133)
EMAP-NWFE 20 6 92.75 (±0.54) 86.58 (±0.94) 0.8511 (±0.0103)

30 pix/class
EMAP 5 10 94.33 (±0.93) 90.32 (±1.40) 0.8926 (±0.0155)
EMAP-PCA 10 10 91.67 (±0.73) 85.58 (±0.68) 0.8399 (±0.0076)
EMAP-NWFE 10 4 93.83 (±0.43) 88.11 (±0.92) 0.8679 (±0.0101)

40 pix/class
EMAP 5 10 95.13 (±0.71) 91.55 (±1.08) 0.9062 (±0.0119)
EMAP-PCA 10 4 92.43 (±0.33) 86.38 (±0.52) 0.8489 (±0.0058)
EMAP-NWFE 10 6 94.20 (±0.30) 88.83 (±0.88) 0.8760 (±0.0097)
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the parameters for each classifier result from a grid-search.
Thus, each classifier obtains a unique set of parameters C and
γ. Therefore, there is not a single best set of parameters for
the overall classifier, which is why these parameters are not
reported here.

TABLE VIII: Tuned SVM-based classification performance of
EMAP, EMAP-PCA and EMAP-NWFE computed over Pavia
Centre dataset without adding synthetic features.

Algorithm AA% (±SD) OA% (±SD) Kappa (±SD)
13 pix/class

EMAP 87.20 (±1.53) 94.24 (±1.07) 0.9189 (±0.0148)
EMAP-PCA 86.21 (±2.83) 93.85 (±1.10) 0.9134 (±0.0154)
EMAP-NWFE 88.42 (±1.48) 94.86 (±0.68) 0.9276 (±0.0095)

20 pix/class
EMAP 90.77 (±1.42) 95.64 (±0.67) 0.9385 (±0.0094)
EMAP-PCA 88.41 (±1.35) 94.82 (±0.64) 0.9269 (±0.0089)
EMAP-NWFE 90.72 (±1.51) 95.60 (±0.70) 0.9380 (±0.0099)

30 pix/class
EMAP 92.57 (±0.85) 96.16 (±0.39) 0.9459 (±0.0055)
EMAP-PCA 91.46 (±0.96) 95.90 (±0.57) 0.9422 (±0.0080)
EMAP-NWFE 92.27 (±0.89) 96.28 (±0.47) 0.9475 (±0.0065)

40 pix/class
EMAP 93.61 (±0.84) 96.97 (±0.52) 0.9573 (±0.0073)
EMAP-PCA 92.55 (±1.18) 96.45 (±0.46) 0.9500 (±0.0064)
EMAP-NWFE 93.46 (±0.80) 96.82 (±0.36) 0.9551 (±0.0051)

TABLE IX: Tuned SVM-based classification performance
of EMAP, EMAP-PCA and EMAP-NWFE computed over
Salinas dataset without adding synthetic features.

Algorithm AA% (±SD) OA% (±SD) Kappa (±SD)
13 pix/class

EMAP 93.55 (±0.60) 87.41 (±1.35) 0.8604 (±0.0149)
EMAP-PCA 91.73 (±1.01) 84.57 (±1.96) 0.8292 (±0.0213)
EMAP-NWFE 93.78 (±0.90) 87.94 (±1.88) 0.8660 (±0.0208)

20 pix/class
EMAP 94.69 (±0.64) 89.92 (±1.44) 0.8880 (±0.0160)
EMAP-PCA 93.02 (±0.47) 86.45 (±1.15) 0.8497 (±0.0126)
EMAP-NWFE 94.86 (±0.47) 89.96 (±1.47) 0.8885 (±0.0163)

30 pix/class
EMAP 95.28 (±0.45) 91.22 (±1.40) 0.9025 (±0.0155)
EMAP-PCA 93.81 (±0.48) 87.57 (±1.18) 0.8621 (±0.0131)
EMAP-NWFE 95.54 (±0.49) 91.91 (±1.25) 0.9101 (±0.0138)

40 pix/class
EMAP 95.91 (±0.48) 92.20 (±1.15) 0.9134 (±0.0127)
EMAP-PCA 94.08 (±0.60) 87.96 (±1.58) 0.8664 (±0.0173)
EMAP-NWFE 95.79 (±0.43) 92.07 (±1.07) 0.9118 (±0.0120)

C. Performances for Various Random Forest Parameters

Fig. 2 shows that the classical parameters which are used
in the literature for random forest classifier, i.e., number of
trees H = 100, and depth, D =

√
d, are not the optimal

parameter values, particularly for severely limited training data
sizes. This conclusion was drawn based on the experiments
conducted over EMAP-PCA and EMAP-NWFE computed
over Pavia Centre and Salinas datasets. Fig. 2 illustrates
instances of the numerical analysis which are presented in
Tables X, XI, XII, XIII.

D. Performance of the Raw Hyperspectral Data Without the
Presence of EMAP

TABLE X: Kappa-based parameter search results for random
forest classifier over EMAP-PCA computed on Pavia Centre
dataset.
HH

HHH
D 1 2 4 6 8 10

13 pix/class
1 0.7525 0.8343 0.8689 0.8766 0.8861 0.8851
5 0.8594 0.8795 0.8832 0.8784 0.8815 0.8916
10 0.8661 0.8853 0.8945 0.8926 0.8970 0.8967
20 0.8739 0.8820 0.8927 0.8942 0.8958 0.8922
50 0.8351 0.8680 0.8723 0.8755 0.8605 0.8546
80 0.8036 0.8228 0.8353 0.8150 0.7119 0.6854
100 0.7371 0.8121 0.7921 0.7958 0.6362 0.6398
150 0.7298 0.7739 0.7318 0.7503 0.4314 0.4827
200 0.7298 0.7105 0.6883 0.7079 0.3070 0.3065

20 pix/class
1 0.7484 0.8587 0.8818 0.8891 0.9002 0.9005
5 0.8683 0.8951 0.9043 0.8942 0.8971 0.8983
10 0.8912 0.9047 0.9068 0.9090 0.9040 0.9082
20 0.8899 0.8999 0.9083 0.9037 0.9026 0.9128
50 0.8854 0.8884 0.9029 0.8974 0.8941 0.8983
80 0.8543 0.8707 0.8832 0.8803 0.8676 0.8649
100 0.8475 0.8742 0.8745 0.8574 0.8404 0.8359
150 0.7959 0.8355 0.8348 0.8515 0.7029 0.6732
200 0.8049 0.8195 0.8236 0.7921 0.5885 0.5609

30 pix/class
1 0.7813 0.8547 0.8957 0.8946 0.9126 0.9142
5 0.8941 0.9070 0.9094 0.9095 0.9093 0.9095
10 0.8988 0.9184 0.9139 0.9182 0.9187 0.9174
20 0.9083 0.9130 0.9123 0.9153 0.9131 0.9177
50 0.8994 0.9067 0.9104 0.9132 0.9074 0.9061
80 0.8945 0.9043 0.9047 0.9083 0.9010 0.9075
100 0.8818 0.8941 0.8978 0.8989 0.8968 0.8959
150 0.8610 0.8884 0.8911 0.8856 0.8438 0.8619
200 0.8437 0.8572 0.8606 0.8697 0.7828 0.7769

40 pix/class
1 0.8319 0.8676 0.9027 0.9111 0.9186 0.9174
5 0.9004 0.9188 0.9183 0.9176 0.9178 0.9153
10 0.9101 0.9242 0.9262 0.9274 0.9208 0.9247
20 0.9127 0.9208 0.9215 0.9165 0.9216 0.9249
50 0.9066 0.9164 0.9157 0.9152 0.9139 0.9114
80 0.8974 0.9094 0.9132 0.9104 0.9084 0.9084
100 0.8898 0.9068 0.9099 0.9140 0.9085 0.9026
150 0.8904 0.9009 0.9060 0.9028 0.8908 0.8879
200 0.8813 0.8842 0.9018 0.8958 0.8664 0.8563

For completeness, we report performances after dimension-
ality reduction but without computation of EMAP on the Pavia
Centre and the Salinas datasets. Table XIV presents the classi-
fication performance computed on the dimensionality reduced
Pavia Centre dataset using PCA and NWFE, with and without
adding 500 synthetic samples. Analogously, Table XV shows
the same classification results for Salinas dataset. The results
are consistent with the processing variants that include EMAP,
in the sense that addition of synthetic samples increases the
classification performance.

VI. COMPARISON WITH SIMILAR METHODS BASED ON
SYNTHETIC DATA GENERATION

In our pipeline, we proposed to fit a GMM on each class
in the training data and draw samples from the GMM to
populate the limited training data. In the literature, there are
other methods that use synthetic data generation. For example,
Neagoe et al. [11] proposed virtual sample generation by
concurrent self-organizing maps (CSOM). In another work
on limited training data, Skurichina et al. [12] proposed a
method that is based on injecting Gaussian noise in the
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TABLE XI: Kappa-based parameter search results for random
forest classifier over EMAP-NWFE computed on Pavia Centre
dataset.
HH

HHH
D 1 2 4 6 8 10

13 pix/class
1 0.7776 0.8501 0.8576 0.8648 0.8700 0.8607
5 0.8749 0.8985 0.8779 0.8687 0.8701 0.8811
10 0.8963 0.9201 0.9276 0.9026 0.9147 0.9110
20 0.9042 0.9213 0.9276 0.9126 0.9183 0.9097
50 0.9103 0.9057 0.9116 0.8664 0.8702 0.8840
80 0.8894 0.8848 0.8962 0.7640 0.7882 0.7883
100 0.8620 0.8924 0.8896 0.7338 0.7662 0.7743
150 0.8561 0.8819 0.8672 0.6658 0.6528 0.6770
200 0.8145 0.8298 0.8356 0.5222 0.5605 0.5210

20 pix/class
1 0.8265 0.8721 0.8859 0.8800 0.8949 0.8951
5 0.9025 0.9143 0.8978 0.8912 0.9033 0.8964
10 0.9175 0.9312 0.9320 0.9199 0.9234 0.9262
20 0.9139 0.9325 0.9322 0.9254 0.9277 0.9221
50 0.9099 0.9177 0.9259 0.9135 0.9224 0.9129
80 0.9086 0.9162 0.9228 0.8762 0.8785 0.8826
100 0.9028 0.9119 0.9174 0.8474 0.8495 0.8471
150 0.8999 0.9025 0.9029 0.7952 0.7757 0.7639
200 0.8946 0.8884 0.8914 0.7389 0.7318 0.7202

30 pix/class
1 0.8463 0.8877 0.9088 0.9133 0.9076 0.9150
5 0.9118 0.9290 0.9168 0.9030 0.9107 0.9135
10 0.9299 0.9379 0.9388 0.9322 0.9334 0.9312
20 0.9330 0.9377 0.9416 0.9337 0.9345 0.9311
50 0.9276 0.9375 0.9380 0.9288 0.9301 0.9318
80 0.9205 0.9314 0.9317 0.9195 0.9190 0.9195
100 0.9205 0.9300 0.9320 0.9124 0.9069 0.9094
150 0.9203 0.9186 0.9197 0.8725 0.8689 0.8791
200 0.9154 0.9160 0.9097 0.8019 0.7994 0.8334

40 pix/class
1 0.8522 0.8997 0.9095 0.9153 0.9147 0.9181
5 0.9285 0.9359 0.9288 0.9141 0.9183 0.9243
10 0.9353 0.9458 0.9375 0.9361 0.9404 0.9356
20 0.9383 0.9459 0.9433 0.9404 0.9393 0.9404
50 0.9371 0.9413 0.9438 0.9351 0.9364 0.9358
80 0.9337 0.9356 0.9351 0.9272 0.9316 0.9276
100 0.9288 0.9379 0.9373 0.9267 0.9296 0.9257
150 0.9276 0.9319 0.9329 0.9012 0.9101 0.9028
200 0.9183 0.9268 0.9251 0.8697 0.8786 0.8728

k nearest neighbor direction (k-NN DNI). We compare the
performance of our approach to these two methods. The results
are presented in Table XVI. EMAP-PCA and EMAP-NWFE
are used as features. The training data size is 13 pixels
per class. Classification is performed with a random forest
classifier with 100 trees and square root of number of features
as the number of variables. The classification is performed 25
times for each case and the overall accuracy (OA), average
accuracy (AA), Kappa and their standard deviations (SD) are
reported. In k-NN DNI, the scaling parameter and the variance
of the Gaussian noise is optimized separately for each case,
to achieve the highest possible performance. For CSOM, the
module size for 13 pixels per class was set to a 13 × 13
grid as it produced the highest performance. The total number
of generated synthetic samples are set to approximately 500
per class for all three methods in each scenario. As shown
in Table XVI, the proposed method outperforms CSOM and
k-NN DNI in all cases.

TABLE XII: Kappa-based parameter search results for random
forest classifier over EMAP-PCA computed on Salinas dataset.
HH

HHH
D 1 2 4 6 8 10

13 pix/class
1 0.7350 0.7730 0.7809 0.7840 0.7891 0.7811
5 0.7963 0.7988 0.7873 0.7851 0.7888 0.7793
10 0.7919 0.7963 0.8054 0.8077 0.8066 0.7956
20 0.7841 0.7834 0.7883 0.7910 0.7912 0.7935
50 0.7534 0.7609 0.7596 0.7618 0.7587 0.7512
80 0.7455 0.7357 0.7024 0.7012 0.7187 0.6991
100 0.7259 0.7134 0.6567 0.6726 0.6674 0.6526
150 0.6825 0.7026 0.6043 0.5972 0.6153 0.5930
200 0.6903 0.6741 0.5520 0.5545 0.5609 0.5497

20 pix/class
1 0.7545 0.7876 0.8051 0.8003 0.7994 0.7987
5 0.8010 0.8135 0.7930 0.7961 0.7993 0.8027
10 0.8104 0.8184 0.8235 0.8099 0.8164 0.8241
20 0.8013 0.8172 0.8117 0.8030 0.8118 0.8050
50 0.7849 0.7817 0.7898 0.7951 0.7826 0.7856
80 0.7699 0.7792 0.7571 0.7621 0.7642 0.7565
100 0.7508 0.7685 0.7437 0.7472 0.7544 0.7411
150 0.7352 0.7453 0.6962 0.6921 0.6850 0.6897
200 0.7251 0.7293 0.6581 0.6392 0.6389 0.6290

30 pix/class
1 0.7764 0.7998 0.8174 0.8184 0.8197 0.8155
5 0.8287 0.8326 0.8179 0.8153 0.8140 0.8137
10 0.8317 0.8380 0.8380 0.8340 0.8376 0.8399
20 0.8153 0.8287 0.8294 0.8269 0.8323 0.8320
50 0.8040 0.8055 0.8088 0.8058 0.8123 0.8083
80 0.7924 0.7881 0.7907 0.7934 0.7900 0.7877
100 0.7927 0.7861 0.7783 0.7799 0.7791 0.7936
150 0.7621 0.7704 0.7588 0.7482 0.7570 0.7596
200 0.7557 0.7523 0.7220 0.7226 0.7123 0.7248

40 pix/class
1 0.7904 0.8157 0.8272 0.8216 0.8327 0.8250
5 0.8350 0.8402 0.8210 0.8282 0.8271 0.8252
10 0.8396 0.8489 0.8489 0.8452 0.8477 0.8437
20 0.8334 0.8434 0.8425 0.8421 0.8342 0.8422
50 0.8114 0.8253 0.8103 0.8207 0.8283 0.8262
80 0.8081 0.8146 0.8059 0.8083 0.8129 0.8114
100 0.8083 0.8008 0.7962 0.8017 0.7960 0.8022
150 0.7804 0.7780 0.7876 0.7830 0.7769 0.7899
200 0.7732 0.7805 0.7639 0.7628 0.7657 0.7703

VII. PERFORMANCE

Fig. 3 shows selected random forest label maps on Pavia
Centre when adding synthetic samples. Analogously, Fig. 4
shows selected random forest label maps on Pavia University
when adding synthetic samples. Synthetic data augmentation
improves the classification accuracy and avoids some misclas-
sification.

Furthermore, the behavior of the trained classifiers on
the whole image (including unlabeled pixels) is shown for
the Salinas dataset, the Pavia Centre dataset, and the Pavia
University datasets in Fig. 5, Fig. 6 and Fig. 7, respectively.
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TABLE XIII: Kappa-based parameter search results for ran-
dom forest classifier over EMAP-NWFE computed on Salinas
dataset.
HH

HHH
D 1 2 4 6 8 10

13 pix/class
1 0.7471 0.7813 0.8001 0.7941 0.7941 0.7956
5 0.8083 0.8223 0.8221 0.8110 0.7917 0.7933
10 0.8232 0.8312 0.8357 0.8296 0.8258 0.8247
20 0.8171 0.8171 0.8315 0.8208 0.8220 0.8106
50 0.8031 0.7893 0.7967 0.7979 0.7547 0.7587
80 0.7854 0.7755 0.7969 0.7834 0.6499 0.6589
100 0.7820 0.7817 0.7820 0.7714 0.5493 0.5664
150 0.7698 0.7677 0.7756 0.7628 0.4025 0.4156
200 0.7518 0.7458 0.7407 0.7596 0.3003 0.3041

20 pix/class
1 0.7434 0.8012 0.8135 0.8203 0.8267 0.8220
5 0.8337 0.8447 0.8401 0.8294 0.8243 0.8242
10 0.8349 0.8473 0.8493 0.8497 0.8456 0.8490
20 0.8370 0.8443 0.8457 0.8511 0.8382 0.8345
50 0.8239 0.8233 0.8238 0.8313 0.8153 0.8165
80 0.8035 0.8133 0.8060 0.8248 0.7714 0.7744
100 0.7989 0.8067 0.7946 0.7928 0.7250 0.7318
150 0.7930 0.7933 0.7995 0.8001 0.6332 0.6135
200 0.7885 0.7832 0.7755 0.7842 0.4812 0.4911

30 pix/class
1 0.7860 0.8146 0.8347 0.8457 0.8380 0.8327
5 0.8542 0.8523 0.8571 0.8422 0.8410 0.8377
10 0.8550 0.8656 0.8679 0.8652 0.8642 0.8675
20 0.8555 0.8565 0.8590 0.8575 0.8586 0.8560
50 0.8357 0.8439 0.8410 0.8487 0.8444 0.8422
80 0.8371 0.8346 0.8392 0.8323 0.8197 0.8283
100 0.8345 0.8340 0.8240 0.8288 0.7964 0.8053
150 0.8134 0.8237 0.8158 0.8215 0.7589 0.7316
200 0.8222 0.8289 0.8058 0.8128 0.6626 0.6791

40 pix/class
1 0.8019 0.8289 0.8436 0.8488 0.8471 0.8431
5 0.8610 0.8712 0.8612 0.8589 0.8420 0.8483
10 0.8602 0.8728 0.8745 0.8760 0.8741 0.8744
20 0.8676 0.8675 0.8729 0.8665 0.8650 0.8698
50 0.8536 0.8624 0.8551 0.8600 0.8512 0.8537
80 0.8510 0.8568 0.8526 0.8510 0.8336 0.8382
100 0.8434 0.8472 0.8425 0.8449 0.8344 0.8422
150 0.8393 0.8320 0.8445 0.8172 0.7857 0.7957
200 0.8309 0.8264 0.8016 0.8217 0.7631 0.7681

TABLE XIV: Random forest classification performance com-
puted on the dimensionality reduced Pavia Centre dataset, with
and without adding synthetic samples.

Algorithm |S| AA% SD OA% SD Kappa SD
Pavia Centre
13 pix/class

PCA 69.34 5.39 85.15 8.18 0.7935 0.1082
PCA 500 84.96 1.27 92.82 1.14 0.8993 0.0155
NWFE 72.91 3.76 81.84 8.30 0.7572 0.0962
NWFE 500 87.53 1.44 92.55 2.69 0.8965 0.0359

20 pix/class
PCA 75.55 3.21 89.67 2.04 0.8541 0.0277
PCA 500 86.95 0.66 93.79 0.71 0.9128 0.0097
NWFE 80.51 1.76 87.78 4.26 0.8304 0.0564
NWFE 500 89.19 0.77 93.70 1.30 0.9121 0.0177

30 pix/class
PCA 80.97 1.74 91.70 1.22 0.8831 0.0171
PCA 500 88.15 1.12 94.28 0.97 0.9196 0.0133
NWFE 84.54 2.00 92.73 0.92 0.8977 0.0126
NWFE 500 89.84 0.61 94.37 0.73 0.9211 0.0099

40 pix/class
PCA 83.26 1.18 92.92 0.42 0.9000 0.0059
PCA 500 88.55 0.90 94.85 0.37 0.9275 0.0051
NWFE 86.77 0.92 93.32 2.11 0.9064 0.0284
NWFE 500 90.72 0.46 95.59 0.80 0.9379 0.0109

TABLE XV: Random forest classification performance com-
puted on the dimensionality reduced Salinas dataset, with and
without adding synthetic samples.

Algorithm |S| AA% SD OA% SD Kappa SD
Salinas

13 pix/class
PCA 74.15 2.69 66.86 6.32 0.6351 0.0657
PCA 500 87.63 1.05 80.51 0.96 0.7837 0.0108
NWFE 76.01 2.57 70.05 2.79 0.6680 0.0286
NWFE 500 89.02 1.28 82.20 1.22 0.8023 0.0136

20 pix/class
PCA 80.52 1.71 73.89 3.42 0.7106 0.0350
PCA 500 88.47 0.55 80.91 1.53 0.7883 0.0166
NWFE 82.24 1.84 76.62 3.22 0.7395 0.0340
NWFE 500 90.38 0.55 83.35 0.97 0.8153 0.0106

30 pix/class
PCA 84.88 0.81 78.29 2.39 0.7592 0.0249
PCA 500 89.92 0.41 82.57 0.76 0.8068 0.0082
NWFE 85.31 0.69 78.62 1.60 0.7624 0.0166
NWFE 500 91.60 0.48 84.96 1.21 0.8330 0.0132

40 pix/class
PCA 86.25 1.03 79.87 1.29 0.7766 0.0140
PCA 500 90.05 0.40 82.70 0.85 0.8084 0.0093
NWFE 86.07 0.95 79.70 2.81 0.7744 0.0295
NWFE 500 91.89 0.38 85.00 1.42 0.8336 0.0155

TABLE XVI: Comparing our proposed method with CSOM
[11] and k-NN DNI [12] using random forest classifier. The
training data size is 13 pixels per class. Number of added
synthetic samples in each method is approximately 500 points
per class.

Method AA% SD OA% SD Kappa SD
Pavia Centre
EMAP PCA

Proposed 84.59 1.58 93.67 0.75 0.9107 0.0104
CSOM 82.52 2.11 92.12 1.22 0.8893 0.0168
k-NN DNI 75.05 3.51 88.88 2.35 0.8442 0.0314

EMAP NWFE
Proposed 89.57 1.15 95.91 0.49 0.9423 0.0069
CSOM 86.94 2.02 94.72 1.15 0.9256 0.0160
k-NN DNI 77.56 4.13 88.56 5.36 0.8410 0.0699

Salinas
EMAP PCA

Proposed 90.96 0.88 83.89 1.72 0.8215 0.0188
CSOM 89.63 1.63 81.53 1.92 0.7959 0.0208
k-NN DNI 77.36 2.52 70.87 3.14 0.6793 0.0329

EMAP NWFE
Proposed 93.17 0.68 87.09 1.26 0.8566 0.0138
CSOM 92.39 0.90 85.69 1.39 0.8413 0.0151
k-NN DNI 81.42 3.64 74.65 3.18 0.7191 0.0334
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(a) (b) (c) (d) (e)

Fig. 3: Label maps on Pavia Centre using 13 training samples per class. (a) ground truth, (b) EMAP-PCA, (c) EMAP-PCA
with 500 synthetic samples per class, (d) EMAP-NWFE, (e) EMAP-NWFE with 500 synthetic samples per class.

(a) (b) (c) (d) (e)

Fig. 4: Label maps on Pavia University using 13 training samples per class. (a) ground truth, (b) EMAP-PCA, (c) EMAP-PCA
with 500 synthetic samples per class, (d) EMAP-NWFE, (e) EMAP-NWFE with 500 synthetic samples per class.
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(a) (b) (c) (d)

Fig. 5: Full label maps on Salinas dataset using 13 training samples per class. (a) EMAP-PCA, (b) EMAP-PCA with 500
synthetic samples per class, (c) EMAP-NWFE, (d) EMAP-NWFE with 500 synthetic samples per class.

(a) (b) (c) (d)

Fig. 6: Full label maps on Pavia Centre dataset using 13 training samples per class. (a) EMAP-PCA, (b) EMAP-PCA with
500 synthetic samples per class, (c) EMAP-NWFE, (d) EMAP-NWFE with 500 synthetic samples per class.
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(a) (b) (c) (d)

Fig. 7: Full label maps on Pavia University dataset using 13 training samples per class. (a) EMAP-PCA, (b) EMAP-PCA with
500 synthetic samples per class, (c) EMAP-NWFE, (d) EMAP-NWFE with 500 synthetic samples per class.
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