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Abstract. In this paper, the simultaneous hand-eye/robot-world prob-
lem AX = ZB is performed using a single X-ray image instead of a
stereo camera in order to avoid the additional tracking device. Our setup
consists of a special X-ray marker, several image preprocessing steps, and
a monocular pose estimation algorithm, for extracting the 6-D pose of the
marker with respect to the X-ray source. Simulations are performed to in-
vestigate the behavior of the proposed hand-eye method when including
inaccuracies of the robot and the non-isotropic errors of monocular pose
estimation. The simulations were evaluated in an experimental setup,
reaching an accuracy of 0.06◦ and 0.77 mm.

1 Introduction

In surgical interventions robots are on the advance because of their high precision
and repeatability. A common topic in robotics is known as hand-eye calibration
and covers the procedure of finding the rigid transformation between the camera
or marker mounted onto the robot’s end-effector and the robot flange, denoted as
X. The state-of-the-art procedure to solve this problem is performed with optical
tracking. However, additional equipment is needed. In this paper, the hand-eye
calibration is performed using a C-arm system which is typically available in
many operating rooms that require imaging. The theory behind the calibration
can be solved with many mathematical approaches, which can differ, for example,
in their parametrization for the rotation and their choice of solving rotation and
translation either simultaneously or separately. Zhuang et al. and Dornaika et
al. solve the problem AX = ZB with the help of quaternions and compute the
orientation before translation [1,2]. Shah rewrites the rotational part in terms of
a Kronecker product [3]. Li et al. present two methods where they solve rotation
and translation simultaneously. Besides the Kronecker product they use dual
quaternions for the second method [4]. Iterative methods, which often use the
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Fig. 1. a) Model for the problem AX = ZB, and b) 2-D acquisition of the marker.
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Levenberg-Marquardt algorithm for finding the minimum of the optimization
problem, are presented e.g. in [5]. Each paper is based on the classical setup
where either a camera is mounted on the end-effector of the robot and acquires
a calibration pattern or an optical tracking system acquires a marker attached on
the robot. In this paper, the tracker is replaced by a static C-arm system which
acquires 2-D images of the marker. Problems arising from monocular instead
of stereo view are the inaccuracies in estimation of the depth and out-of-plane
rotations [6]. In simulations, the effect of the expected inaccuracies from the
robot and from pose estimation of the marker with respect to the X-ray source
is investigated. These results are compared with real measurements.

2 Methods

The simultaneous hand-eye and robot-world problem AX = ZB is visualized in
Figure 1(a). The problem describes a closed loop with the two unknown matrices
X and Z which is the transformation between marker and robot flange or X-
ray source and robot base, respectively. During the calibration procedure the
robot flange moves to different poses, resulting in several measurements Ai –
transformations from the C-arm source to the marker – and Bi – transformations
from the robot base to the flange. While B is known due to the forward kinematic
of the robot, A has to be estimated from the X-ray image. Each matrix of the
equation AiX = ZBi is a rigid transformation matrix which includes a 3×3
rotation matrix R and a 3×1 translation vector t. AX = ZB can be split into
a rotational and a translational equation

RARX = RZRB (1)

RAtX + tA = RZtB + tZ . (2)

For finding the pose of the marker A, the 3-D geometric model of the marker
is required. Our marker has a cylindrical shape and consists of five metal beads
embedded in plastic. Metal has a much higher density than plastic and can be
seen easily on X-ray images (Figure 1(b)). In order to estimate the 6-D pose from
a 2-D image, which is also known as Perspective-n-point (PnP) problem, at least
four metal beads have to be visible on the 2-D acquisition. The fifth bead of the
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marker is redundant, but might be necessary when two dots overlap each other.
The pose estimation algorithm provided by the Visual Servoing Platform (ViSP),
a modular cross platform library written in C++, is used [7]. The included dot
tracker algorithm finds dots on an image automatically, and checks their shape
and size. The further pose estimation algorithm, which is based on the ideas of
DeMenthon and Lowe, matches a 3-D model with the projection, finds the best
combination, and calculates the transformation matrix [8,9]. Since there might be
some disturbances on the X-ray image, which impair the success of the algorithm,
different preprocessing steps are necessary. First, a black top-hat filter is used in
order to remove large objects in the image. Second, an intensity normalization
is performed. Third, this filtered image is binarized with an adaptive threshold.
These implementations make use of the OpenCV library. All steps are done in
order to highlight the dots and remove other disturbing objects in the image.
The challenge of pose estimation is that the dimensions which mean a change
in depth of the beads are more difficult to estimate. These are the z-coordinate
which describes the point on the axis between X-ray source and detector, α and
β which are the rotations around the x- and y-axis of the X-ray source frame.

3 Experiments

The hand-eye calibration was performed with Octave using the open source
implementation from Shah [3]. The experiments are conducted both on simulated
and real data.

3.1 Hand-Eye Simulation

The assumed geometrical distances in the synthetic setup are based on a realistic
arrangement of robot, marker, and C-arm system. The movements of the robot
flange were set to a range of ±50 mm and ±50◦ that was randomly sampled.
After the ideal loops A∗

iX
∗ = Z∗B∗

i with 15 measurement poses are created,
Gaussian noise was added on the robot and C-arm data. The inaccuracies of
the robot were simulated with a standard deviation σtrans = 0.2 mm for each
component of the translation and σrot = 0.05◦ for each Euler angle α, β and
γ. Since no valid information regarding the inaccuracies of the transformations
between C-arm source and marker are given, the noise of them was varied. In
the first experiment σtrans and σrot were slightly increased from 0 to 1 mm and
0 to 0.5◦, respectively. This was done in order to generally examine the effects of
increasing noise on the accuracy of hand-eye calibration. The second experiment
takes the expected inaccuracies of the monocular pose estimation into account.
That means that α, β and z are assumed to be worse compared to the other
components. It was of interest, whether only the overall noise or the increasing
noise on single components is of importance as well. The noise level of the C-
arm data was set constant to overall standard deviations σtrans,all = 1 mm and
σrot,all = 0.5◦. With the factor f , α, β and z are weighted with values from 0 to
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10. Thus, the standard deviations of the C-arm data were set to

σtrans =
1√
f2 + 2

· (1, 1, f)mm (3)

σrot =

√
0.5√

2f2 + 1
· (f, f, 1)◦ . (4)

In case of synthetic data the ground truth is known. Thus, the estimated trans-
formation matrix X̂ can be compared directly with the correct matrix X∗. The
rotational error is computed as

∆θ = θ(R−1
X∗RX̂) , (5)

where θ is the rotation angle given in degrees from its angle-axis representation.
The translational error ‖∆t‖ in mm is the norm of the difference translation
vector of ground truth and noisy matrix

‖∆t‖ =
∥∥tX∗ − tX̂

∥∥ . (6)

3.2 Verification Measurements

For real measurements an industrial robot (KR 10 R1100 sixx, KUKA) and a C-
arm system (ARTIS pheno, Siemens Healthineers) were used. The images have
a spatial resolution of 0.16 mm per pixel. The results were compared with the
simulated data, in order to figure out the inaccuracies of A and the resulting
deviations of X and Z. The errors of real data can be determined as the offset

Ei = (ZBi)
−1(AiX) , (7)

when following each i-th closed loop of n test data. From this error matrix Ei

the rotational error in degrees is computed with

RMSErot =

√√√√ 1

n

n∑
i=1

(θ(RE i))2 , (8)

while the translational error in mm is

RMSEtrans =

√√√√ 1

n

n∑
i=1

tTE itE i . (9)

4 Results

4.1 Hand-Eye Simulation

With increasing rotational and translational noise on the X-ray data, the er-
rors both of each matrix (Figure 2(a)) and the closed loop errors (Figure 2(b))



Hand-Eye-Calibration using Monocular X-Ray 5

Fig. 2. Behavior of the rotational and translational errors with increasing amount of
noise on A, which is the transform between C-arm and marker.
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(a) Errors for each matrix
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(b) Errors of closed loop

Fig. 3. Behavior of the rotational and translational errors with increasing weighting
factor on α, β and z of A, which is the transform between C-arm and marker.
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(b) Errors of closed loop

increase steadily. Although the rotational error of X and Z is equal, the transla-
tional error of Z is higher. Due to the larger distance between C-arm and robot
of ‖tZ‖ = 1007.8 mm, compared to the distance between robot flange and marker
of ‖tX‖ = 86.6 mm, the same rotation error leads to higher deviations from the
correct position. In the second experiment, the noise level was constant while the
distribution between the single coordinates and angles was changed. The results
in Figure 3 show an almost constant error level, what indicates that the overall
noise level is much more important than the distribution on the components.

4.2 Verification Measurements

The 24 measurements were evaluated with 6-fold cross validation, whereby five
subsets were used as training data for the hand-eye calibration and one subset
as test data for calculating the errors. The averaged errors of the closed loop
are: RMSErot = 0.06◦ and RMSEtrans = 0.77 mm. In order to reach the same
results with synthetic data, the overall noise level of the C-arm data had to be
set approximately to σtrans,all = 0.45 mm and σrot,all = 0.001◦. Applying these
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standard deviations on simulated data and computing the errors of each matrix
results in the following values: The rotational error of X and Z is ∆θ = 0.04◦,
the translational error of X is ‖∆t‖ = 0.24 mm, and the one of Z is ‖∆t‖ =
0.63 mm. The translational error of Z is still small because the rotational error
is very low.

5 Discussion and Conclusion

In this paper, it could be shown that hand-eye calibration with X-ray is feasible.
Moreover, the accuracy of the setup used in this paper seems to be similar to
the optical tracking system [10]. The translational errors depend on a large ex-
tend on the overall rotational noise and the geometrical distance. To reach good
results the estimated rotation has to be quite accurate. The inaccuracies of the
depth estimation are tolerable as long as the other components can be computed
accurately enough. In future work, the knowledge of the more inaccurate compo-
nents could be used in order to further improve the pose estimation algorithm,
e.g., by residual weighting.
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