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Abstract—In X-ray fluoroscopy, static overlays are used to visu-
alize soft tissue. We propose a system for cardiac and respiratory
motion compensation of these overlays. It consists of a 3-D motion
model created from real-time MR imaging. Multiple sagittal
slices are acquired and retrospectively stacked to consistent 3-D
volumes. Slice stacking considers cardiac information derived
from the ECG and respiratory information extracted from the
images. Additionally, temporal smoothness of the stacking is
enhanced. Motion is estimated from the MR volumes using
deformable 3-D/3-D registration. The motion model itself is a
linear direct correspondence model using the same surrogate
signals as slice stacking. In X-ray fluoroscopy, only the surrogate
signals need to be extracted to apply the motion model and
animate the overlay in real time.

For evaluation, points are manually annotated in oblique MR
slices and in contrast-enhanced X-ray images. The 2-D Euclidean
distance of these points is reduced from 3.85 mm to 2.75 mm
in MR and from 3.0 mm to 1.8 mm in X-ray compared to the
static baseline. Furthermore, the motion-compensated overlays
are shown qualitatively as images and videos.

Index Terms—MRI, X-ray imaging, heart, vessels, motion
compensation, multi-modality fusion

I. INTRODUCTION

X-ray fluoroscopy is an important modality for guidance
of minimally-invasive interventions. It has good spatial and
temporal resolution and clearly visualizes interventional de-
vices and bones. However, the contrast of soft tissue is low
and 3-D information is lost due to the transparent projection
to 2-D. To remedy these drawbacks, fusion of the X-ray
images with previously acquired overlays has been proposed
[1]–[3], which is also known as augmented fluoroscopy. The
overlays are rendered semi-transparently directly on top of
the X-ray images, see Fig. 1. These roadmap overlays are
generated from 3-D modalities such as magnetic resonance
imaging (MR), computed tomography (CT), or rotational C-
arm CT. X-ray fused with MR imaging (XFM) is particularly
interesting, because MR offers complementary features. It has
good soft tissue contrast, provides functional and anatomical
information in 3-D, and does not use ionizing radiation. The
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Fig. 1. Augmented fluoroscopy using an MR-based overlay onto an X-ray
image of a pig. Best viewed in color.

goal of XFM is to reduce procedure times, X-ray dose, and
amount of injected contrast agent [4], [5].

The early approaches for augmented fluoroscopy [1]–[3]
and current commercial systems feature static overlays. The
roadmap image is registered to the X-ray coordinate system
once and then automatically follows the changes of the C-
arm and table position. If the patient moves, the registration
is invalidated and the overlay is positioned incorrectly relative
to the live images and the patient. For infrequent rigid motion
of the patient relative to the table, a manual or automatic
re-registration can be performed [6]. However, respiratory
and cardiac motion are non-rigid and inevitable in thoracic
and abdominal interventions. Thus, static overlays are not
in correspondence with the fluoroscopic images most of the
time, as visualized in the supplementary material. Without
correction of the motion between overlay and fluoroscopic
image, the accuracy of the overlay might not be sufficient
for some procedures. For example, pulmonary vein isolation
requires an accuracy of 5 mm [7], while other sources use
2 mm as a threshold for cardiac applications [8].
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A. Motion Compensation in X-Ray Fluoroscopy

Cardiac and respiratory motion compensation for overlays
in X-ray fluoroscopy is an active research topic. There are
two fundamental approaches. In the first approach, motion
compensation is based solely on the X-ray images. Brost
et al. compensated cardiac and respiratory motion of the left
atrium based on catheter tracking in 3-D [8]. For abdominal
interventions, Ross et al. tracked the in-plane motion of the
diaphragm and used it to compensate overlays of the liver
vasculature [9]. Schneider et al. built a rigid 3-D motion model
for coronary arteries from biplane angiograms [10] based on
principal component analysis (PCA) and compensated motion
using constrained registration. In contrast, Shechter et al. built
a deformable 3-D motion model from the angiograms and
used cardiac phase and diaphragm tracking as surrogate signals
[11].

In the second fundamental approach, a pre-procedural mo-
tion model is built and used for motion compensation during
the intervention. King et al. presented a 3-D affine model
for respiratory motion correction [12]. The model was built
from 2-D sagittal MR slices. The diaphragm position was
used as the respiratory surrogate signal and the influence of
cardiac motion was removed by cardiac gating. Faranesh et al.
used real-time MR imaging on three planes to create a 3-D
affine motion model [13]. 2-D in-plane motion was computed
for each plane and a separate 3-D affine transformation was
fitted for each cardiac and respiratory phase. Surrogate signals
were derived from electrocardiography (ECG) and diaphragm
tracking. De Senneville et al. created a motion model based
on PCA for motion compensation in MR [14]. Peressutti
et al. presented a Bayesian respiratory motion model for
echocardiography [15]. The affine motion model was based on
low resolution dynamic 3-D MR images. More information on
different types of motion models can be found in [16].

There are some limitations in the methods proposed in the
literature. A parametric motion model, e. g., rigid or affine,
is commonly used [8], [10], [12], [13], [15]. This is an
approximation of the real motion that is only sufficient for
some cases, e. g., the motion of small regions of interest.
Another limitation is the use of the diaphragm as a respiratory
surrogate [12], [13]. Especially in X-ray, it cannot be ensured
that the diaphragm is visible, for example because of a small
field of view or the chosen C-arm angulation. Some methods
are restricted to respiratory motion compensation only, which
reduces accuracy or necessitates cardiac gating [12], [15].

B. MR Motion Models

There are three different types of imaging sequences to
acquire motion-resolved data from MR. The simplest approach
is to acquire MR images as fast as possible. 2-D slices can
be acquired with frame rates of above 10 Hz using parallel
imaging and fast protocols, e. g., balanced steady-state free
precession (bSSFP). Unfortunately, 3-D imaging is not yet fast
enough to capture cardiac motion directly. The frame rate for
3-D imaging can be up to 2 − 4 Hz [15], [17]. In addition,
there is a trade-off between resolution and acquisition speed.

An alternative approach is binning or gating. A surrogate
signal of the desired motion, e. g., ECG for cardiac motion
or a navigator for respiratory motion, is acquired together
with the raw MR k-space data. The k-space data is sorted
into bins based on the surrogate signal and a separate MR
volume is reconstructed for each bin. In respiratory binning,
one approach is to use a radial sampling trajectory with self-
gating based on the center of k-space [18], [19]. Tokuda
et al. acquired additional navigator echoes to sort the k-space
samples into respiratory bins in a multi-slice protocol [20]. For
cardiac binning, there are acquisition protocols that require
a single [21] or multiple breath-holds, but free-breathing
CINE imaging has also been proposed [22]. Binning enables
the creation of 4-D MR with multiple phases or bins, high
resolution, and a large field of view. However, it only yields
an average motion cycle. Furthermore, dependencies between
cardiac and respiratory motion cannot be captured unless a
5-D MR with two binning dimensions is acquired. Recent
developments using compressed sensing reconstruction might
make this feasible [23].

The third alternative to create 4-D MR images is slice-
stacking [17], [24]–[30]. A stack of parallel slices is acquired
with real-time MR imaging and retrospectively sorted into
volumes. Sorting is often performed using a surrogate signal,
for details see Section I-C. The main difference to binning
is that complete 2-D slices are acquired and reconstructed
at high spatial and temporal resolution before reordering. In
consequence, differences in the motion patterns over time can
be measured. So far, this approach has only been used to
handle respiratory motion at a fixed or averaged cardiac state
or for a field of view that excludes the heart.

C. MR Respiratory Signals

In 4-D MR imaging, many different sources of respiratory
signals have been proposed, including external devices [28],
[30], the center of k-space [18], [19], [23], [26], the body area
[25], [27], body boundary [26], navigator signals [20], and
navigator slices [29]. Recently, dimensionality reduction has
become popular in MR [17], [31], [32] and other applications
[32], [33]. It has the advantage of being purely data-driven,
so there are no geometric or frequency assumptions and no
manual interaction is necessary. In addition, specific MR
acquisition protocols or pre-reconstruction information like k-
space data is not required. Furthermore, for our application, a
corresponding respiratory signal during the fluoroscopy-guided
intervention must be derivable.

D. Contribution

In this paper, we propose a cardiac and respiratory motion
model of the whole heart for motion compensation in XFM.
The idea is to use MR imaging to create a motion model in
addition to the overlays. To this end, 3-D MR volumes that
resolve cardiac and respiratory motion are required. A new
slice stacking method is developed to create the 3-D+t MR
images from a stack of 2-D+t MR slices. The novelty is that
cardiac as well as respiratory motion is resolved using our
slice stacking method. Furthermore, temporal regularity of the
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3-D+t MR volumes is enhanced in an energy minimization
formulation. The cardiac information is based on ECG data
acquired with skin electrodes. The respiratory information is
extracted directly from the MR images using dimensionality
reduction, which means a navigator slice does not need to be
acquired. For the respiratory signal extraction, we propose a
new method that automatically detects and aligns the corre-
sponding respiratory signals from the MR slices.

A subject-specific, fully deformable motion model is gen-
erated from 3-D+t MR. This is achieved by deformable
registration of all 3-D volumes to an automatically determined
reference volume. To enable interventional use of the motion
model, a fast, linear, direct correspondence between surrogate
signals and motion is learned.

II. METHODS

An overview of the pre-procedural steps of the proposed
method is given in Fig. 2a. The MR slices are stacked into
volumes of consistent cardio-respiratory state (Section II-B).
These volumes are registered to a reference phase (Sec-
tion II-E1) to estimate the 3-D motion. A regression model
is built to relate the 3-D motion and the surrogate signal
(Section II-E2). A separate MR volume is acquired for seg-
menting the overlay. The intra-procedural steps for motion
compensation in fluoroscopy are given in Fig. 2b. The motion
model is driven by a surrogate signal based on X-ray images
and ECG (Section II-F). The motion is used to animate the
segmentation as an overlay on the X-ray image in real time.

A. Materials

All experiments were performed at the National Heart,
Lung, and Blood Institute of the National Institutes of Health
in Bethesda, MD, USA. MR-only experiments were per-
formed on volunteers and combined MR and X-ray ex-
periments were performed on pigs. Six healthy Yorkshire
swine were anesthetized with ketamine (25mg/kg), midazolam
(15mg/kg), and glycopyrrolate (0.01mg/kg), and maintained
on isoflurane (2-3%) with mechanical or manual ventilation.
Femoral vascular access was obtained with ultrasound guid-
ance. The experiments were approved by the institutional
review board (for humans) or institutional animal care and
use committee (for animals) and performed according to
contemporary NIH guidelines. The MR images were acquired
on a 1.5 T scanner (Aera, Siemens Healthcare, Erlangen,
Germany). The ECG was measured using vectorcardiogram
computed from the standard four-electrode set delivered with
the MR scanner. The X-ray images were acquired on a
floor-mounted, bi-plane, flat-panel X-ray C-arm system (Artis,
Siemens Healthcare, Forchheim, Germany). The transfer be-
tween the MR scanner and the X-ray system was performed
on a table moving on rails (MIYABI, Siemens Healthcare,
Forchheim, Germany).

B. Motion-Resolved MR Volume Generation

For slice stacking, sagittal slices p(t)[n] ∈ RDp are acquired
at N adjacent slice positions and T images per slice. Sagittal

(a) Pre-procedural

(b) Intra-procedural

Fig. 2. Illustration of MR-based motion compensation for augmented flu-
oroscopy. Input data is colored in green, pre-procedural processing steps in
blue, real-time processing steps in red. Two MR acquisitions are necessary, a
3-D volume for segmenting the structures of interest and dynamic MR slices
for motion modeling. ECG is required in MR and X-ray to inform about the
cardiac phase. X-ray images are displayed to the physician and used to extract
the respiratory signal during the intervention. Best viewed in color.

slices are used because respiratory motion then is mostly in-
plane, which leads to less space-dependent phase shift [27].
N ∈ {17, . . . , 20} is chosen such that the slices cover the
region of interest. The slices with a slice thickness of 6−8 mm
and a pixel spacing of 1.75 − 2.25 mm are acquired with a
bSSFP sequence. BSSFP offers high frame rates, good contrast
between blood and heart muscle, and is robust to motion and
flow [34]. A flip angle of 50◦ and an echo time of 1.1 ms
is used. With an acceleration factor of 2, a frame rate around
10 Hz is realized. Imaging is performed for 20 s per slice, such
that T ∈ {174, . . . , 190}. The slices are acquired sequentially,
i. e., slice 1 for 20 s, then slice 2 for 20 s, etc. The first 5 images
of each slice are discarded to avoid the transient magnetization.

For segmentation of the overlay, a static whole-heart 3-D
MRI is acquired with respiratory self-navigation [35]. It
features a 3-D radial bSSFP sequence with a flip angle of
50◦ − 115◦ and a reconstructed size of 1603 − 1923 voxels
with 1.15− 1.38 mm isotropic voxel size.

C. Slice Stacking using a Markov Random Field

As described in Section I-C, most methods for slice stacking
directly match the images from different slices based on a
description of their motion state. As we want to resolve



IEEE TRANSACTIONS ON MEDICAL IMAGING 4

Fig. 3. Graphical model for slice stacking. Random variables are displayed
as circles. Observed variables are shaded.

cardiac and respiratory motion in the MR volumes, we de-
scribe the motion state of each slice using a surrogate signal
s(t)[n] ∈ RS containing cardiac and respiratory components,
see Section II-D. In addition, we extend this with the idea
of temporal smoothness, which assumes that the relative se-
quence of motion states is similar in all slices, i. e., if the image
t1 of slice n is assigned to image t2 in the reference slice,
then it is likely that the image t1 + 1 of slice n corresponds
to t2 + 1. However, this assumption is only valid if the slices
are acquired sequentially.

Our approach is formulated as a second-order Markov
random field (MRF). The random variable A(t)[n] represents
the image number in slice n that is assigned to image t in the
reference slice, where t ∈ {1, . . . , T} and n ∈ {2, . . . , N}.
Without loss of generality, n = 1 denotes the reference slice.
Each A(t)[n] is assigned a discrete label a ∈ {1, . . . , T}. As a
common MRF notation, A(t)[n] = a is abbreviated as a(t)[n].

The MRF energy is defined as
N∑
n=2

[
T∑
t=1

φ(t)[n]
(
a(t)[n]

)
+ µ

T∑
t=2

ψ
(
a(t−1)[n], a(t)[n]

)]
,

(1)
where φ(t)[n] is an unary inter-slice similarity term and ψ a
binary smoothness term. The corresponding graphical model
is illustrated in Fig. 3.

The unary inter-slice similarity term is a weighted squared
Euclidean distance of the surrogate signals

φ(t)[n] (a) =
∥∥∥w � (s(t)[1] − s(a)[n]

)∥∥∥2
2
, (2)

where � denotes the element-wise product. Each dimension of
the surrogate signal can be weighted differently using w ∈ RS .

The temporal smoothness term is an absolute distance
function truncated with the threshold η ∈ R

ψ (a, b) = min (η, |a− b+ 1|) . (3)

There is no penalty if temporal neighboring frames in the
reference slice are assigned to temporal neighbors in the target
slice. The penalty for skipped frames increases linearly until
the maximum penalty η is reached. Discontinuities in the
assignment of more than η frames receive a constant penalty,
such temporal distant frames can be assigned to each other if
the surrogate signals match well.

The optimal assignment a∗ is given by the minimum of
Eq. (1), which corresponds to maximum-a-posteriori (MAP)
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Fig. 4. The linear cardiac phase is embedded in a 2-D circle to enforce a
consistent position of end-diastole and start-systole.

inference in the MRF. The energy decomposes into indepen-
dent optimization problems for each slice, as indicated by the
plate notation in Fig. 3. Thus, belief propagation converges to
the global optimum. If the temporal smoothness Eq. (3) was
omitted, the minimum of Eq. (1) would be identical to directly
matching the surrogate signals. Using a∗, T 3-D MR volumes
q(t) ∈ RDq , Dq = NDp are generated as

q(t) =
(
p(t)[1]ᵀ,p(a∗(t)[2]),[2]

ᵀ
, . . . ,p(a∗(t)[N]),[N ]

ᵀ)ᵀ
. (4)

The surrogate signal of the volume is by definition identical
to the surrogate signal of the reference slice s ≡ s[1].

D. Surrogate Signals

The surrogate s(t)[n] ∈ RS is generated independently for
each slice. It consists of a respiratory dimension s

(t)[n]
1 =

r(t)[n] and two cardiac dimensions s
(t)[n]
2 = c

(t)[n]
1 , s

(t)[n]
3 =

c
(t)[n]
2 , i. e., S = 3. To weight the surrogate components, we

use w = (1, 0.5, 0.5)
ᵀ, ensuring that overall the respiratory

and cardiac components are equally weighted. The generation
of c(t)[n] and r(t)[n] is described in the following two sections.

1) Cardiac Surrogate Signal: The cardiac surrogate signal
c(t)[n] is based on the ECG signal for each slice n. ECG is
available in MR scanners for patient monitoring and cardiac-
triggering. The ECG signal itself is not an adequate surrogate
signal, since it has similar values for most of the cardiac cycle,
which are not directly related to the motion magnitude of the
heart. However, prominent features such as the R-peaks are
informative and are usually used as triggers. The time since the
last R-peak is retrospectively converted to a linearly increasing
cardiac phase ϕ(t)[n] ∈ [0, 1). To reflect the continuity of
cardiac motion between end-diastole (ϕ = 1) and start-systole
(ϕ = 0), the cardiac phase is embedded into a 2-D circle as

c
(t)[n]
1 = cos

(
2πϕ(t)[n]

)
(5)

c
(t)[n]
2 = sin

(
2πϕ(t)[n]

)
. (6)

This circular embedding is visualized in Fig. 4.
2) Respiratory Surrogate Signal: The respiratory surrogate

signal r(t)[n] is derived from the respective MR image p(t)[n].
For reasons that will be detailed later, PCA is used instead
of nonlinear manifold learning for dimensionality reduction.
PCA is the orthogonal linear transformation that maximizes
the variance of the projected embeddings. PCA is computed
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independently for each slice n as the eigendecomposition
C [n]E[n] = E[n]Λ[n] of the MR slice covariance matrix C [n],
where E[n] is the eigenvector matrix and Λ[n] the diagonal
eigenvalue matrix, which is ordered by decreasing eigenvalues
Λ

[n]
0,0 > . . . > Λ

[n]
K,K . We compute up to K eigenvectors, as

only the largest eigenvalues are of interest in our application.
The low-dimensional embedding, from which the surrogate
signal is derived, is computed as

r̃
(t)[n]
k =

(
E[n]ᵀ

)
k
p(t)[n] , (7)

where the subscript k selects the k-th row of a vector or matrix.
Dimensionality reduction methods suffer from an ambiguity

of sign and ordering [36]. In our case, this means it is unknown
which PCA component k contains respiratory motion and
whether high or low signal values correspond to exhalation.
These ambiguities could be avoided if the slices were embed-
ded jointly [24]. However, the manifolds in our application are
not similar enough, because two independent motion patterns
occur in the images, and cardiac motion is only visible in
a subset of the slices. Joint embedding is evaluated as an
alternative method in the experiments (Section III).

To remove the ordering ambiguity, prior information about
the frequency of breathing is used to find the respiratory
component. The K possible 1-D signals are the dimensions
k of the low-dimensional embedding r̃

(t)[n]
k . The respiratory

surrogate r(t)[n] = r̃
(t)[n]

κ[n] is chosen as

κ[n] = argmin
k

{
k | fmin ≤ argmax

f

∣∣∣F {r̃[n]k }∣∣∣ ≤ fmax

}
,

(8)
where |F| is the magnitude of the Fourier transform and
fmin = 0 Hz, fmax = 1.5 Hz. Intuitively, the highest-variance
dimension k of the PCA with the peak frequency inside the
specified frequency range for breathing is selected. As the
eigenvalues are sorted by decreasing magnitude, the selection
can be performed using the argmin over indices. A similar
strategy was employed in [14] for separating physiological
motion and noise. Additionally, we suppress noise in the signal
by forward-backward filtering with a third-order Butterworth
filter with the same passband as above.

To remove the sign ambiguity, we make use of the res-
piratory eigenvectors E

[n]

∗,κ[n] . The notation ∗, κ[n] selects the
κ[n]-th column of the matrix E[n]. The alignment procedure is
visualized in Fig. 5. For each slice, the respiratory eigenvector
indicates which pixels gets brighter/darker relative to the mean
during breathing. This behavior should be similar for all
slices up to differences due to anatomy. The agreement of the
eigenvector signs is determined using the normalized cross-
correlation (NCC) between the eigenvector images. Similar to
template matching and convolution, spatial shifts are scanned
and NCC is computed for each shift. For the shift with
the maximum absolute value of NCC, the sign of the NCC
indicates whether or not the eigenvectors are aligned. As the
appearance of distant MR slices changes considerably, we
sequentially align the sign of neighboring slices E

[n]

∗,κ[n] and

E
[n+1]

∗,κ[n+1] . This idea to use the eigenvectors for alignment
is the reason we prefer PCA over manifold learning. PCA

(a) Slice image
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Fig. 5. Respiratory signal alignment for neighboring MR slices. PCA
embedding of the slice images (a) results in a respiratory signal for each
slice (b). The signals themselves have no inherent temporal correspondence
and are not sufficient to determine the sign ambiguity. The PCA eigenvectors
(c) indicate how the intensity of the images changes with respiration. The
maximum NCC (d) between the eigenvectors is positive if the respiratory
signals are aligned, and negative if the signs are flipped. In (c) and (d), negative
values are blue, 0 is white, and positive values are red. In this example,
the correlation is positive, which means there is no sign flip between the
respiratory signals in (b). Best viewed in color.

eigenvectors give spatial information, whereas the eigenvectors
occurring in manifold learning give the coordinates of the
low-dimensional embeddings. To align eigenvectors resulting
from manifold learning, additional prior information would be
required [36].

The respiratory signal of each slice is normalized along the
whole sequence to [0, 1] approximately, using the following
method that is robust to outliers. The minimum and maximum
peaks of the respiratory signal are detected, and the medians
of the respective extrema are used for linear normalization.
With this approach, the respiratory signal can be out of the
range [0, 1] for deep inhales or exhales. However, the influence
of single deep inhalations or exhalations on the signal range
is restricted, which is important since the slices are acquired
sequentially and can have different respiratory patterns. In
addition, the same normalization of the respiratory signal must
be achieved under X-ray for applying the motion model.

There is a remaining global sign ambiguity, i. e., whether
a respiratory signal of 0 corresponds to exhale or inhale.
The procedure described above only aligns the sign of the
respiratory signals relative to each other. To define the global
sign, we exploit the general property of human respiration that
more time is spent in exhalation than in inhalation [37]. As
this property is more stable over long time scales, the sign of
the respiratory signals is defined such that the temporal median
of the respiratory signal of all slices is smaller than 0.5.

E. Motion Model

This section describes how the patient-specific, cardiac
and respiratory motion model is built from the previously
generated MR volumes by using registration and regression.
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1) Registration: All T 3-D MR volumes q(t) are registered
to a reference volume q(1) to estimate the motion m(t) ∈
R3Dq . The reference volume is selected automatically accord-
ing to the cardio-respiratory state of the static MR volume for
segmentation, usually end-diastole and end-expiration.

Pair-wise, deformable 3-D/3-D registration is performed
in a variational framework based on the evaluation work
of Werner et al. [38]. A NCC data term is combined with
diffusion regularization and diffeomorphic transformations.
It is optimized in a multi-resolution strategy using gradient
descent. The parameters for registration are the number of
resolutions Nlevel, the regularization weight γ, the step length
τ and the number of iterations Niter of the optimizer.

2) Regression Model: In a direct correspondence motion
model, f : s 7→ f (s) = m directly maps a surrogate signal s
to a motion field m. A linear function is used

f (s) = Ms+m , (9)

because it is fast to evaluate in the application phase of
the motion model. Moreover, training is possible from rel-
atively few samples. In the literature, linear regression is
a common approach for respiratory motion modeling from
low-dimensional surrogates [16]. It has been shown to be
as accurate as more complex regression methods for this
application [39]. The parameters M ∈ R3Dq×S , m ∈ R3Dq

are trained from T samples consisting of surrogate signals s(t)

as inputs and motions m(t) as targets. The training method is
ridge regression with the regularization weight λ.

In principle, the input motions allow to capture inter-
cycle and intra-cycle variation [16]. However, the surrogate
signals restrict the flexibility. The circular embedding of the
cardiac phase in Eq. (6) prevents inter-cycle variation, i. e., the
estimated cardiac motion follows the same path in each cycle,
albeit at different speeds depending on the RR interval. Intra-
cycle variation, i. e., different cardiac motion during systole
and diastole, is possible. The respiratory surrogate r(t)[n] is
a 1-D amplitude signal, which means it does not distinguish
between inhalation and exhalation. However, varying breathing
depth and breathing frequency can be captured. This would not
be possible with a phase-based respiratory surrogate.

F. Motion Compensation in X-Ray

Our prototype transparently renders 3-D mesh overlays
given in the C-arm coordinate system onto X-ray images.
Originally, the meshes and the motion model are given in MR
coordinates. Both coordinate systems are registered manually
based on multi-modal skin markers, which have been shown
to yield accurate registration [7], [40].

To compensate the motion of the overlay during the
fluoroscopy-guided intervention, the main tasks are to de-
termine the surrogate signals, to apply the motion model,
and to transform the mesh vertices. As in MR, the cardiac
surrogate signal comes from the simultaneously acquired
ECG. The difference is that the cardiac phase is calculated
based on extrapolated RR intervals, as future triggers as in
MR postprocessing are not available. The respiratory signal
is extracted from the X-ray images using kernel PCA on

multi-resolution patches [33], which ensures robustness to
disturbances occurring in interventional X-ray, such as contrast
agent injection or automatic exposure control. This method
contains a training phase of 45 images for each C-arm position,
during which the same amplitude normalization is applied as
for the MR respiratory signal. The output of the motion
model is computed by applying Eq. (9). The mesh vertices
are transformed in MR coordinates after linearly interpolating
the corresponding position in the motion field.

G. Implementation

The general pipeline was implemented in Python based on
its scientific libraries (NumPy, SciPy, scikit-learn). However,
the MRF energy function and its optimization (OpenGM [41])
and the registration (ITK [42]) are implemented in C++.
The motion model application and the mesh rendering are
implemented on the GPU using OpenGL and Glumpy.

III. EXPERIMENTS

The following setup is used in the experiments. Due to the
lack of data and accurate ground truth, all the hyperparameters
were tuned manually such that visually good results were
seen in the algorithm steps. For slice stacking, the weight is
µ = 0.001 and the truncation is η = 32, see Section II-C.
K = 3 components are used in the PCAs for respiratory signal
extraction from MR. The parameters for registration are set to
Nlevel = 4, γ = 0.02, τ = 10.0, and Niter = 1000. The
motion model uses the regularization weight λ = 0.1. In X-
ray, the respiratory signal estimation uses the settings from
[33] and is applied to the whole sequence.

A. MR Statistics

To give an intuition of the real-time MR slice images that
are acquired for motion modeling, we qualitatively show some
statistics of the MR images. The magnitude of the motion is
visualized using temporal minimum and maximum intensity
projections of a slice in an exemplary dataset.

Another interesting statistic is the coverage of the cardio-
respiratory plane. The cardio-respiratory plane is a 2-D plane
spanned by the cardiac phase ϕ and the respiratory signal r.
A high coverage means that many images are acquired in that
cardio-respiratory state. Since cardiac phase and respiratory
signal are continuous quantities, we estimate their probability
density function using kernel density estimation (KDE). We
use KDE with a Gaussian kernel with a standard deviation
of 0.1. The evaluation is based on a single free-breathing
volunteer dataset with 20 slices and 169 frames per slice. An
independent KDE is performed for each slice, and we show
the point-wise mean, minimum, and maximum density.

B. MR Slice Motion

To compare slice stacking with binning for 4-D MR volume
generation and motion compensation, 4-D respiratory binned
MR, 4-D cardiac binned MR, and real-time sagittal slices were
acquired for two volunteers and one pig. The volunteers were
free breathing, while the pig was on a ventilator.
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For respiratory binning, 5 breathing phases are acquired
with a T1-weighted, self-gated, radial stack-of-stars sequence
[19]. The reconstructed volume of size 192× 192× (28− 40)
has a resolution of (1.35−2.08)×(1.35−2.08)×(3−4) mm.
For cardiac binning, 30 cardiac phases are acquired with a
bSSFP CINE sequence during free breathing, retrospectively
cardiac binned and compensated for respiratory motion [22].
The 4-D volume is created by stacking 2-D slices, where each
slice is acquired for 8 s, independently reconstructed, and
sorted according to the ECG trigger times. The reconstructed
volume of size (160 − 192) × (120 − 128) × (17 − 20) has
a resolution of (1.75− 2.34)× (1.75− 2.34)× (6− 8) mm.
As an alternative to the proposed slice stacking method, we
implemented and compare to the self-alignment of manifold
(SAM) technique proposed by Baumgartner et al. [24]. The
parameters of this method were chosen similar to the ones
proposed in the original publication with additional fine-
tuning: σ1 = 0.15, σ2 = 0.15, µ2 = 0.01, k = 30, and
d = 4. For respiratory binning, cardiac binning, and for both
slice stacking methods, a motion model as in Section II-E is
created. These motion models are evaluated regarding their
ability to compensate the observable patient motion in MR.

For this evaluation, additional real-time slices were acquired
in non-sagittal orientations, e. g., short axis view, and four
chamber view. Key points were tracked using template match-
ing with manual correction. In total, 34 key point trajectories
from 14 sequences are evaluated. The motion models are
applied on the evaluation slices to estimate the motion of
the key points. A difference is that the respiratory surrogate
is created from tracking structures moving with respiratory
motion, e. g., the top of the diaphragm or the chest, instead of
the method described in Section II-D2 to avoid a bias towards
our method.

The estimated position of the key point is compared to the
ground truth position for each point in time. As the ground
truth position can only be annotated in 2-D in the slice, the
estimated 3-D position is projected into the evaluation slice
and compared using the 2-D in-plane Euclidean distance. As
a baseline, a static overlay is used. This corresponds to keeping
the position of the key point fixed in the reference phase for
all images.

C. X-Ray Key Points

To apply the complete motion compensation workflow,
a reference 3-D MR for annotation and registration, real-
time MR slices for motion modeling, and X-ray images for
evaluation are acquired for 5 pig datasets. There are 2-3
biplane X-ray acquisitions with contrast agent injection into
the left ventricle (LV) and the left and right pulmonary artery
(PA). Images of size 1024× 1024 pixels with a pixel size of
0.15 − 0.31 mm are acquired. The frame rate is 15 Hz and
the length of the image sequences used for evaluation is 151
to 301 frames.

Besides our complete proposed method, we train models
that only compensate one of the motions to show the rel-
ative influence of respiratory and cardiac motion. This is
achieved by restricting the input of the motion model learning
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Fig. 6. ECG of a pig during normal fluoroscopic imaging (a) and during
contrast agent injection in the left ventricle (b) causing arrhythmia.

(Section II-E2) to only a respiratory surrogate or only a
cardiac surrogate. Consequently, the cardiac motion states are
averaged in the respiratory motion model and vice versa. As
a baseline, we use non-motion-compensated overlays, i. e.,
fixed at the reference phase without any motion. Additional
comparison is done with SAM slice stacking with the same
parametrization as in Section III-B.

We measure the 2-D error of key points in contrast-enhanced
images. Key points for respiratory motion include branching
points of the PAs. For cardiac motion, points on the heart
shadow are used. Initially, we tried to inject contrast agent into
the LV and use key points on the LV. However, the injection
in the LV frequently caused premature ventricular contraction.
Due to this arrhythmia, which is evident in the ECG (Fig. 6),
the heart moves abnormally. This type of motion is not
observed in the 4-D MR and cannot be compensated with
our model. This limitation is further discussed in Section V.

The trajectories of key points are annotated manually in
X-ray sequences. Different key points are annotated in each
plane of the biplane sequence, depending on visibility. The
key points are also marked in the reference 3-D MR, which
would usually be used for segmentation of the overlay. To
accurately mark the 3-D point corresponding to the 2-D key
points, the 2-D point of an image close to the reference phase
is backprojected to 3-D using the projection geometry of the
X-ray image. A 3-D point close to the backprojection line
and to the anatomy of interest is chosen. In total, 35 point
trajectories are evaluated on 20 X-ray sequences, between one
and four trajectories per sequence. The error of the key points
is measured on the detector plane using the 2-D Euclidean
distance.

D. Comparison of Manual and Automatic Ventilation

The proposed method relies on reproducible motion patterns
for MR slice stacking and for motion compensation. With
a ventilation machine, the respiratory motion is regular in
amplitude and frequency. To test the variability during MR
scanning, the volunteer datasets were acquired free breathing
and the animal datasets were acquired while the pigs were on
a ventilation machine. A similar MR key point evaluation as
in Section III-B is performed using 24 trajectories from free-
breathing volunteer scans and 42 trajectories from ventilated
pig scans. To evaluate the robustness of the whole motion
compensation pipeline w. r. t. variable breathing patterns, X-ray
sequences were acquired with manual and with automatic ven-
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tilation. During manual ventilation, varying breathing depths
and frequencies were simulated. The same X-ray key point
evaluation as in Section III-C is performed. From the 20 X-
ray sequences, 12 were recorded during automatic ventilation
and 8 during manual ventilation.

E. Comparison of Regression Methods for MR Motion Model

In this experiment, the regression used in the MR motion
model is investigated more thoroughly. We propose to use
linear regression, which is compared to kernel ridge regression
(KRR) and to principal component regression (PCR) here
[43]. In KRR, a Gaussian radial basis function kernel with a
bandwidth of 0.5 is used. The PCA in PCR is computed with
10 components. The regression methods are evaluated on the
training data with the coefficient of determination R2, which
measures how much of the variance in the training data is
captured. Furthermore, we evaluate the X-ray key point error
from Section III-C for all three motion models to demonstrate
their influence on the whole pipeline.

F. X-Ray Overlay

The error at key points is a quantitative but sparse measure.
The general impression of the quality of the motion compen-
sation is defined by how well the whole overlay matches the
fluoroscopic images. This can also be seen using contrast agent
injection. To generate the overlay, we segment the PAs and the
LV manually in the reference 3-D MR. The same 5 datasets
as in the previous experiment are used. For the LV, the same
arrhythmia problem occurs.

Quantitative results for this use case are challenging and
inaccurate. In X-ray, the contrast agent flows in and out of the
structures, so they are only partially visible most of the time.
Error measures are dominated by these structural differences
due to contrast filling and not by the misalignment due to
motion. Furthermore, the annotation of the contrast agent is
very difficult due to the high number of frames and the varying
and low contrast. Therefore, we show qualitative results only.

G. Runtime

Since the proposed method is targeted for interventional
use, the runtime is important. In particular, respiratory signal
extraction, motion model application, and overlay rendering
in X-ray are crucial. These steps are performed during the
intervention and must run in real time. Slice stacking, 3-D/3-D
registration, and motion model training are less time-critical,
since they are performed pre-procedurally. The runtime of all
processing steps is measured for 5 datasets. This experiment
is executed on a consumer notebook with an Intel Core i7-
3720QM CPU with 8 GB of RAM and a NVIDIA Quadro
K2000M.

IV. RESULTS

A. MR Statistics

In Fig. 7, the temporal minimum and maximum intensity
projections of a sagittal slice through the LV are shown. The
size of the blood pool in the LV is much smaller in the

(a) Minimum intensity projection (b) Maximum intensity projection

Fig. 7. The pixel-wise minimum (a) and maximum (b) intensity of a slice
acquired for slice stacking indicates the extent of cardio-respiratory motion.
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Fig. 8. Coverage of cardio-respiratory plane for the real-time slices for an
exemplary dataset. The mean (a), point-wise minimum (b) and point-wise
maximum (c) density over all the slices is shown. Best viewed in color.

minimum intensity projection image. A part of this is also
due to respiratory motion of the heart. This can be seen at
the most inferior level of the heart, which moves by 7mm
between Fig. 7a and Fig. 7b. In addition, the magnitude of the
respiratory motion of the diaphragm can be seen nicely. For
the top of the diaphragm, the visible motion in these images
corresponds to 17.5mm in the vertical direction.

The cardio-respiratory plane of one dataset is provided in
Fig. 8. The mean plane (Fig. 8a) shows that more time is
spent in end exhale than in other respiratory states, illustrating
the property that is used as a heuristic for the global respira-
tory signal sign, cf. Section II-D2. The cardiac phases are
distributed equally. This is due to the way the cardiac phase is
computed as the relative time between two R-peaks and due to
the trigger-independent acquisition of the MR images. In the
minimum image, it can be seen additionally that full inhale
and very deep exhalations did not occur in all slices.

B. MR Slice Motion

For the static baseline, the key points move by 3.85 ±
2.61 mm from the reference. All models reduce the motion
compared to the baseline. Cardiac binning has an error of
3.80 ± 2.62 mm and respiratory binning an error of 2.92 ±
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TABLE I
RESULTS OF X-RAY MOTION COMPENSATION ON PORCINE DATA

(MEAN EUCLIDEAN DISTANCE IN MM ± STANDARD DEVIATION)

Cardiac Traj. Respiratory Traj. All Traj.
Joint 2.20± 0.89 1.63± 0.94 1.79± 0.96
Respiratory 2.25± 0.86 1.62± 0.95 1.79± 0.97
Cardiac 2.32± 0.99 2.80± 1.11 2.66± 1.10
SAM 2.90± 1.30 1.89± 1.05 2.17± 1.21
None 2.66± 1.12 3.15± 1.55 3.01± 1.46

2.24 mm. The combination of both brings the error down to
2.82 ± 2.3 mm. Slice stacking using SAM leads to an error
of 3.09 ± 2.4 mm. With 2.76 ± 2.3 mm, our proposed slice
stacking has the lowest error. The difference to the baseline
is significant for the proposed method and for respiratory
binning. However, possibly due to the small sample size, the
difference between respiratory binning and the proposed slice
stacking is not significant. Statistical testing was performed
with the Wilcoxon signed rank test and p < 0.01.

C. X-Ray Key Points

The numerical results are summarized in Table I. The
experiment is separated into trajectories dominated by cardiac
motion (left), respiratory motion (middle), and all trajectories
(right). For all trajectories, the error of the static overlay is
3.01 ± 1.46 mm. This is reduced to 2.66 ± 1.1 mm using
the cardiac model. The respiratory and the joint model have
similar errors in the range of 1.8 mm. This amounts to a
reduction by 40%. For comparison, the SAM-based model
leads to an error of 2.17 mm. Note that the results are biased
towards static overlays, because the errors are averaged over
time and most of the time is spent in the reference phase.
The difference between all methods and the static overlay
is significant for all models. Joint and respiratory model are
significantly better than the cardiac model, but not significantly
different from each other. Statistical testing was performed
with the Wilcoxon signed rank test and p < 0.01.

In Fig. 9, the residual motion per trajectory is shown as box-
plots for the different versions of the proposed motion model,
i. e., joint cardio-respiratory (left), respiratory only (middle
left), cardiac only (middle right), and the static baseline (right).
In most sequences, the residual motion is reduced by all
motion models. Respiratory motion is incorrectly estimated in
trajectories 7 and 9, where the breathing depth is varying and
the motion is overestimated. The cardiac motion model more
often performs worse than the static baseline, particularly in
trajectories 19, 22, 23, 24, 26, and 34, often due to a phase
offset between true and estimated motion.

D. Comparison of Manual and Automatic Ventilation

In the MR key point experiment, the motion for the free-
breathing human subjects without motion compensation is
4.76± 2.63 mm. Using our motion compensation method, the
error is reduced to 3.51± 2.48 mm. For the pig datasets, the
motion without compensation is only 1.86± 0.92 mm, which
can be reduced to 1.11± 0.48 mm with the proposed method.
In the X-ray key point experiment, the manual ventilation

motion without compensation is 3.76 ± 1.66 mm, which
is lowered to 2.38 ± 1.06 mm with motion compensation.
For automatic ventilation, the initial motion magnitude of
2.57 ± 1.12 mm is reduced to 1.44 ± 0.70 mm after motion
compensation.

E. Comparison of Regression Methods for MR Motion Model

The coefficient of determination R2 on the training data is
0.66 for linear regression and 0.64 for PCR. For KRR, R2

is 0.7, showing its increased modeling power. To analyze the
distribution of the motion types, the R2 is also evaluated for
linear regression only with the respiratory surrogate, where it
is 0.62, and only with the cardiac surrogates, where it is 0.04.
In the X-ray key point experiments, linear regression has a
residual error of 1.79±0.96 mm and PCR of 1.78±0.96. KRR
has a slightly higher error of 1.82±0.94 mm. The differences
between PCR and linear regression are marginal. If the number
of PCA components is increased to 10 in PCR, both methods
yield identical results. The higher R2 of KRR together with
the slightly higher key point error indicates an overfitting on
the training data.

F. X-Ray Overlay

In Fig. 10, the static mesh and the mesh with motion
compensation are overlaid jointly onto an X-ray image. Only
the outlines of the meshes are shown to avoid occlusions. All
24 sequences with contrast agent injection are included. For
the angiograms of the left ventricle, both overlays often do
not match the lumen, e. g., rows 2 and 5 in columns 1 and 2.
This is in part due to premature ventricular contraction and
in part due to model errors. The motion-compensated overlay
is still closer to the true lumen than the non-compensated.
For the angiograms of the pulmonary arteries, the motion-
compensated overlay fits the contrast agent nicely in the
anterior-posterior (AP) acquisitions, e. g., row 1, 2, and 6 in
column 3. In the lateral acquisitions, the correspondence of
contrast agent and overlay is harder to assess due to occlusions
of the left and the right pulmonary artery. Note that two
consecutive images in Fig. 10 are consecutive AP and lateral
acquisitions of the same scene, e. g., row 1 columns 1 and 2.

In addition to the images here, all results are also shown
as videos in the supplementary material. In these videos, the
static and motion-compensated mesh are overlaid separately
onto the corresponding X-ray sequence and visualized side-
by-side using mesh rendering. The videos demonstrate the
performance of motion compensation for different cases, for
example respiratory motion of the pulmonary arteries and
cardiac motion of the left ventricle during normal rhythms
and during arrhythmias caused by contrast agent injection.

G. Runtime

First, the runtimes of the pre-procedural steps to create the
motion model are reported. Slice stacking using the proposed
method is performed in 40.1 ± 3.6 s. The registration of the
3-D MR volumes requires 2.6 ± 1.3 hours per dataset. As
there are 176 to 185 volumes in a dataset, this means that a
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Fig. 9. Boxplots of the root mean square error per keypoint trajectory for the cardio-respiratory (left), respiratory (middle left), and cardiac motion model
(middle right) and for the static baseline (right). Trajectories 0-30 are dominated by respiratory motion, while the others are mostly influenced by cardiac
motion. Best viewed in color.

single 3-D/3-D registration is processed in 52.8±26.1 seconds.
Another 1.3± 0.1 s are needed to learn the regression model.

The overall runtime of the intra-procedural processing is
10.7 ± 5.8 ms per image. This includes the computation
of the surrogate signals on the CPU, the transfer of image
and surrogate data to the GPU, and the application of the
motion model and the rendering of the overlay on the GPU.
With 7.8 ± 2.3 ms per image, the majority of the runtime is
spent for extracting the respiratory signal from the image. The
processing time is well below the shortest sampling intervals
usually used in fluoroscopy, which is 66.7 ms, i. e., the method
is real-time-capable. In a clinical product, an additional delay
of the display of the X-ray image by 11 ms might not be
tolerable. In this case, an additional surrogate signal or motion
prediction step would be required [44].

V. DISCUSSION

The MR slice motion experiments show that slice stacking
is competitive with binning approaches for motion modeling.
The proposed method to stack slices based on cardiac and
respiratory surrogate signals is relatively simple. Addition-
ally, some other properties of the MR sequence for slice
stacking are advantageous for our application. Firstly, only
one scan is necessary instead of two, reducing the scan

and setup complexity. Secondly, this scan resolves cardiac
and respiratory motion, such that derived motion models can
capture the dependency between them. Thirdly, slice stacking
gives multiple cardiac and respiratory cycles, instead of one
binned average. Last but not least, a multi-slice, real-time
MR sequence is available on modern scanners from all major
vendors. In this work, we used the bSSFP sequence, but
the method is not limited to this sequence. Depending on the
application, other fast MRI sequences could be used [28], [45].
This simplifies reproduction and distribution of our method.

In our experiment to evaluate the full motion compensation
workflow based on X-ray images (Section IV-C), the joint
motion model gives the lowest errors. The apparent 2-D
motion was reduced by 40% on average for both motion
types. In relation to previously published results, this is state
of the art. The following reported percentages are based
on different datasets and measures, thus, the values are not
directly comparable. King et al. achieved a reduction of
respiratory motion between 23% and 79%, but cardiac motion
was excluded by gating [12]. Shechter et al. reduced cardio-
respiratory motion of the coronaries by 48 − 63% [11]. The
reduction achieved by Faranesh et al. was between 8% and
52% for aorta and right coronary artery [13]. The motion
model based on SAM slice stacking [24] leads to comparable
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Fig. 10. Outline of the static (green) and the motion-compensated overlay
(blue) for all sequences with contrast agent injection. From each sequence, an
image with good contrast filling and as much motion as possible relative to
the reference phase is displayed. Best viewed in color. In the supplementary
material, a video of each sequence with and without motion compensation is
available.

results for the respiratory trajectories, but fails for cardiac
trajectories. This is an indicator that SAM focuses mostly on
the dominant motion type, i. e., respiratory motion, and largely
ignores cardiac motion.

The comparison of our motion compensation method on
free-breathing/manually ventilated subjects and automatically
ventilated subjects from Section IV-D confirms the expecta-
tions. The motion magnitude is lower for automatic ventilation,
as indicated by the lower mean error without motion compen-
sation. Additionally, in both the MR experiments and the X-ray
experiments, the percentage of the motion that can be com-
pensated is higher in the datasets with automatic ventilation.
This means that also the variability of the motion is lower
with automatic ventilation. However, the results for manual
ventilation are encouraging as well. The relative performance
of the motion compensation is only worse by 7−12 percentage
points.

Regarding the different types of motions, the motion in
cardiac trajectories is generally not compensated as well as the
motion in respiratory trajectories. Cardiac motion is spatially
less smooth and therefore harder to estimate using registration.

To investigate the influence of the registration on those results,
we computed the motion fields with additional regularization
weights γ. This is the main influence on the smoothness
of the motion fields in the registration. For the X-ray key
point experiments of Section III-C, the cardiac trajectories
without motion compensation have an error of 2.66 ± 1.12,
which was reduced to 2.20 ± 0.89 with the standard setting
of γ = 0.02. For a larger regularization of γ = 0.05,
the error is 2.23 ± 0.85, and for a smaller regularization of
γ = 0.005, the error is reduced to 2.15 ± 0.94. However,
for the respiratory trajectories, the trend is reversed, i. e.,
slightly smaller errors for larger γ and higher errors for smaller
γ. Thus, even though optimized registration parameters can
improve cardiac motion compensation results, it is not the
main reason why respiratory motion is captured better than
cardiac motion. A more important reason seems to be the
relationship of the surrogate signal with the cardiac motion,
as indicated by the low R2 score for the cardiac model in
Section III-E. However, it has to be considered that one reason
for the low score is the fact that cardiac motion has a smaller
magnitude than respiratory motion and only covers a small
part of the field of view. Another issue is the less accurate
annotations in the X-ray image for cardiac trajectories, since
the heart shadow lacks prominent key points. All in all,
the quantitative results for cardiac motion compensation in
Section III-B and Section III-C are not satisfactory. Further
work is required to better compensate and better evaluate the
cardiac component of the motion model. Nevertheless, the
motion-compensated overlays presented in the supplementary
material and Section III-F subjectively fit the cardiac motion
well and improve the perception of the motion.

Of course, our method for motion compensation is not
perfect and there are residual errors. All steps in the proposed
pipeline can introduce some inaccuracies, e. g., misregistra-
tions in the 4-D MR or insufficient capacity of the motion
model. These are the interesting errors for this study. However,
there are other sources of error that are not directly related
to motion compensation but still influence the results. First
of all, the manual annotation of 2-D point trajectories in X-
ray is error-prone because of transparency effects such as
foreshortening, overlapping structures, and varying contrast
levels. Second, other steps in the workflow can adversely affect
the evaluated measures. For example, the rigid registration
of the coordinate systems of X-ray and MR based on skin
markers cannot account for non-rigid movements of the subject
during transfer. We use the rail-based table to minimize this
issue. Third, the behavior and appearance of the anatomical
target region can change during the intervention. The stiffness
of devices such as guidewires or needles distorts the anatomy
and changes its mechanics. The physician might also interact
with and alter the anatomy, for example ablation or biopsy. For
Section IV-F, there is the additional issue of segmentation.
Due to noise, low resolution, and partial volume effects in
MR, the manual segmentation of PAs and LV does not exactly
correspond to the contrasted lumen in X-ray.

Another limitation of the presented approach is the compen-
sation of abnormal motions. Abnormal motions can occur in
respiration, e. g., coughing, or in the heart, e. g., arrhythmias.
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The majority of motions observed during MR imaging are nor-
mal. Furthermore, the surrogate signals are low-dimensional
representations of the motion state. Thus, the motion learned
by the linear model is dominated by the normal motions.
This is good, because most motions during the intervention
are normal as well. The model can adapt to changing rates
or amplitudes of the motion. However, more complex motion
patterns cannot be learned due to these limiting factors. For use
in a clinical setting, the ability to deal with abnormal motions
still has to be improved or the cases of failure have to be
highlighted to the clinicians. Currently, the proposed method
is not equipped to detect false overlays. This would be an
interesting direction for future work.

An important alternative to patient-specific motion models,
as proposed here, would be a population-based statistical
motion model. A statistical model would enable a reduction
in MR scan time and computation time and could increase
the robustness of the method. However, it is more difficult
to deal with abnormalities. The major limitation would occur
for abnormal anatomies, for example in the case of structural
heart disease, where it is challenging to fit a population-based
model. However, the need for guidance is particularly high,
since the anatomy and the motions are different for each
patient.

For clinicians, the compensation of cardiac and respira-
tory motion in image fusion is important, depending on
the application [1]. The fact that the overlays are static in
current systems is a problem in the transcatheter treatment of
structural heart disease [46]. In all cardiac interventions, target
structures such as pulmonary veins, valves, and coronaries, are
affected by both types of motion. Correction of cardiac motion
matters most for precise targeting. Respiratory motion affects
the whole heart and can be described well with parametric
models [12], such that compensation is feasible and generally
advantageous. For interventions in other areas of the thorax
and abdomen, only respiratory motion occurs and should be
compensated.

Considering runtime, only the transfer time between MR
and X-ray is available for creating the motion model. In the
hybrid OR setup with a C-arm and an MR scanner in the
same room, there are only around 10 minutes between the
acquisition of the MR images and the start of the interventional
procedure. With the current solution, we do not yet meet that
goal. The computationally most intensive task is registration.
(T − 1) 3-D/3-D registrations have to be performed to create
the motion model. To reduce this time, better hardware to
compute the (T − 1) registrations in parallel, a more effi-
cient GPU-based implementation, or a simplified registration
method, e. g., non-diffeomorphic transformations, is required.
Alternatively, the number of time steps could be reduced,
which leads to a trade-off between accuracy and runtime.
The runtime of the application phase during the intervention
already fulfills real-time constraints. This is achieved with a
CPU and GPU implementation of respiratory signal extraction
and motion model application.

VI. CONCLUSION

We have presented a new method for motion compensation
of overlays in augmented fluoroscopy. The method uses real-
time MR imaging to create a 3-D model of cardiac and
respiratory motion. This motion model is driven by surrogate
signals. The cardiac surrogate signal is based on ECG and res-
piratory surrogate signal is extracted from the MR images. The
model can be applied in the fluoroscopy-guided intervention
because ECG is also available and a corresponding respiratory
signal can be extracted from the X-ray images. To the best of
our knowledge, it is the first method to compensate cardiac
and respiratory motion in a fully deformable manner. In the
experiments, we showed that cardiac and respiratory motion
are reduced substantially. The motion model can be applied
during the intervention in real time. However, the runtime of
model generation is not yet clinically acceptable.

The approach for respiratory signal extraction still has some
drawbacks. The respiratory signal extraction must be retrained
for each C-arm position [33], leading to short time without
motion compensation for each position. Additionally, it is
assumed that the respiratory signals for MR and X-ray are
equivalent to each other, because they are extracted from the
images in a similar manner. However, the signals depend on
the breathing patterns during the training phase. Ideally, a
mapping between the different signals would be trained, but
this is infeasible because there is no concurrent X-ray and MR
imaging. One solution to these problems with image-based
respiratory signal extraction would be an external respiratory
sensor that is attached during MR and X-ray. However, this
has other issues such as drift and synchronization. A fusion of
image-based and sensor-based respiratory signals is a promis-
ing direction for research.

In the future, we want to apply the method to human patient
data. The datasets used here come from pig experiments,
which have different motion characteristics. Furthermore, all
pigs were anesthetized and on a ventilation machine during
MR scanning. Consequently, the motion variability is small.
To test how the model handles variability, we used manual
ventilation during X-ray imaging in some pigs, but this was
just a first step in that direction.

Furthermore, the proposed workflow should be evaluated in
a clinical prototype. Pediatric cardiology is a suitable clinical
specialty for initial testing. Many patients are anesthetized,
leading to reproducible motions, and have structural heart
disease, where the abnormal anatomy increases the need for
advanced guidance systems. However, the method is very
general and can be applied to all kinds of fluoroscopy-guided
thoracic and abdominal interventions. Further work is needed
to evaluate the value of animated overlays to the physicians
in terms of reducing fluoroscopy time, contrast dose, and
improving overall procedure success rates.
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J. Bogaert, F. Maes, and H. Heidbüchel, “Biplane three-dimensional
augmented fluoroscopy as single navigation tool for ablation of atrial
fibrillation: accuracy and clinical value,” Heart Rhythm, vol. 5, no. 7,
pp. 957–964, 2008.

[5] A. Hazeem, A. Anas, Y. Dori, K. K. Whitehead, M. A. Harris, M. A.
Fogel, M. J. Gillespie, J. J. Rome, and A. C. Glatz, “X-ray magnetic
resonance fusion modality may reduce radiation exposure and contrast
dose in diagnostic cardiac catheterization of congenital heart disease,”
Catheterization and Cardiovascular Interventions, vol. 84, no. 5, pp.
795–800, 2014.

[6] J. Wang, A. Borsdorf, B. Heigl, T. Köhler, and J. Hornegger, “Gradient-
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