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Abstract 3-D camera systems are useful sensors for

several higher level vision tasks like navigation, envi-

ronment mapping or dimensioning. However, the raw

3-D data is for many algorithms not the best represen-

tation. Instead, many methods rely on a more abstract

scene description, where the scene is represented as a

collection of geometric primitives like planes, spheres

or even more complex models. These primitives are

commonly estimated on individual point measurements

which are directly affected by the measurement errors

of the sensor.

This paper proposes a method for refining the pa-

rameters of geometric primitives for structured light

cameras with spatially varying patterns. In contrast to

fitting the model to a set of 3-D point measurements,

we propose to use all information that belongs to a par-

ticular object simultaneously to directly fit the model to

the image, without the detour of calculating disparities.

To this end, we propose a novel calibration procedure

which recovers the unknown internal parameters of the

range sensors and reconstructs the unknown projected

pattern. This is particularly necessary for consumer

structured light sensors whose internals are not avail-
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able to the user. After calibration, a coarse model fit is

considerably refined by comparing the observed struc-

tured light dot pattern with a predicted virtual view of

the projected virtual pattern.

The calibration and the refinement methods are

evaluated on three geometric primitives: planes, spheres

and cuboids. The orientations of the plane normals are

improved by more than 60 %, and plane distances by

more than 30 % compared to the baseline. Furthermore,

the initial parameters of spheres and cuboids are refined

by more than 50 % and 30 %. The method also operates

robustly on highly textured plane segments, and at

ranges that have not been considered during calibration.

Keywords Structured light · Range imaging ·
Geometric Primitives

1 Introduction

Accurate scene information is a critical component for

numerous vision-based applications, such as dimension-

ing, robot navigation, floor detection, SLAM algorithms

or generally any map building task. These applications

greatly benefit from the recent proliferation of low-cost

cameras that capture 2-D images with additional depth

information [20,4,22]. Well-known depth cameras are

based on Time-of-Flight, stereo vision, and structured

light. These cameras capture dense, ordered point clouds

of the scene at high frame rates with reasonable accu-

racy.

Higher level vision tasks like robot navigation or map-

ping oftentimes compute an intermediate representation

of the data. The segmentation and accurate detection

of planes is a common task. For example, in the context

of robotics, several algorithms for synchronous local-

ization and mapping (SLAM) operate on 3-D planes
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that have been detected and segmented from the raw

sensory information [22,23,4,3]. Plane representations

have also bee used for the calibration of range sensors

to color sensors [11,9]. The extrapolation of missing

measurements at object boundaries as demonstrated by

Moerwald et al. is another example for the usefulness

of abstract representations of objects in the scene [17].

Fitting models to specific regions in the captured point

cloud is also useful in a dimensioning context, e.g. if the

size of box-like objects needs to be measured. Naturally

this applies to all types of models which can be fit to a
list of 3-D measurements, for example in a least-squares

fashion or via RANSAC.

Abstract representations are popular because they

address three challenges of working with 3-D data:

1. Higher level vision algorithms oftentimes do not op-

erate on the raw sensory measurements, but require

a model of the environment anyways. Furthermore,

abstract representations simplify many common cal-

culations like determining the size of objects or com-

puting the intersections of multiple objects.

2. The additional depth dimension increases the amount

of data to be processed (which may be a bottleneck,

especially in real-time applications like SLAM). By

computing a simplified geometric representation, the

data rate can be considerably reduced.

3. Current range cameras provide only limited accu-

racy. For structured light and Time-of-Flight cam-

eras, these errors range from several millimeters up

to multiple centimeters [14,8]. Fitting models of ge-

ometric primitives to segments of the point cloud

can reduce the impact of noise on subsequent cal-

culations, especially if the measurement errors stem
from temporal noise sources.

In this work, we present a highly accurate method for

fitting a 3-D model to a segment in a point cloud using a

consumer structured light camera. Well-known examples

of this class of sensors are the Microsoft Kinect, Asus

Xtion and the more recently released Orbbec Astra1.
These cameras use a single infrared camera to capture a

projector-generated infrared dot pattern. The distortion

of the dot pattern is used to compute depth. One advan-

tage of structured light sensors over stereo systems is

that they provide dense depth data on surfaces with ho-

mogeneous texture. Typically, structured light cameras

calculate distances via block matching of small patches.

In contrast to that, we propose a method that exploits

the complete 2-D image information that represents an
object to find an accurate parametric object for this

object.

1 https://orbbec3d.com

Our method is based on the idea that, for any para-

metric model in 3-D, one can simulate the projection

and observation of the emitted dot pattern. We propose

to create a virtual view of the object based on a model

that defines the object. If the model describes the ob-

served object perfectly, then the virtual image and the

observed image will be identical. Thus, by measuring

the similarity between these two images and adjusting

the model parameters such that the similarity increases,

one can optimize for more accurate parameters.

A fundamental requirement for creating such virtual

views is the knowledge of all internal parameters that
describe the structured light sensor: a model of the

projector, the spatial relation between projector and

camera and the emitted dot pattern. The challenge

with off-the-shelf structured light sensors, like those

mentioned above, is that the user typically has no access

to these parameters. To tackle this problem, we propose

a novel calibration method, which is able to recover

the intrinsic parameters of the projector, the spatial

relation between the projector and the camera, and to

reconstruct the unknown emitted dot pattern from two

or more images.

The contributions of this work consist of three parts:

1. We present a novel calibration technique to estimate

pinhole model parameters for the projector, the ex-
trinsic parameters of camera and projector, and the

unknown dot pattern.

2. We present a new refinement approach for geometric

primitives for structured light cameras. In contrast

to the regular pixel-wise disparity calculation, we

propose to use all pixels that belong to the object

simultaneously. This image information is combined

with constraints posed by the model’s shape to refine

the initial parameters.

3. We show that initial estimates for three different

geometric primitives, namely planes, spheres and

cuboids, can be refined significantly with the pro-

posed method. In the case of planes, we show that

the angular and distance accuracy of plane models

are increased by more than 60 % and 30 % compared

to the baseline. Initial estimates of spheres can be

improved by up to 50 %. Furthermore, even complex

models, like cuboids can be refined by up to 30 %.

In Section 2, we present related work. The notation

used in this work is explained in Section 3. Section 4 con-

tains a detailed description on the calibration method.

In Section 5 we give information on how to obtain an

initialization for an object which can be refined with

the method described in Section 6. The performance of

the method is evaluated in Section 7. We summarize

and conclude our findings in Section 8.

https://orbbec3d.com
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Fig. 1: Geometric Primitive Refinement. Parameters θ of an initial parametric model are refined in an iterative

process. By creating virtual views of the object and comparing it to the observed image, θ is adjusted such that

the similarity increases and an optimal parameter set θ∗ can be obtained. The sensor model, that is summarized

with the parameters Πc, Πp,Rcp,S, is obtained with the calibration method described in Section 4.

2 Related Work

A structured light camera system is defined by a number

of parameters: the intrinsic parameters of the camera

and the projector, their spatial relation and finally the

projected pattern. In custom setups, these parameters

can either be directly controlled by the user, or obtained

via calibration.

Moreno and Taubin published a calibration toolbox

for such systems to find the spatial relation by using a

calibration target [16]. Ye and Song recently proposed

a method for refining an initial calibration result based

on control points in 3-D space [27].

Yamazaki et al. presented a method for estimating

the spatial relation between the camera and the projec-

tor as well as the intrinsic parameters of both devices

[26]. The method does not require a calibration target

but is consequently not able to determine the scale. An-

other target-less approach for setups with at least two

cameras and a projector have been proposed by Bird

and Papanikolopoulos [2].

The above-mentioned methods are designed for cus-

tom structured light systems, or setups which allow the

user to control the projected patterns. However, these

methods are not applicable for off-the-shelf sensors, like

the Microsoft Kinect or Orbbec Astra, as these cameras

do not provide access to their internal parameters. In

this work we relax these requirements and present a

method which is capable of calibrating a generic struc-

tured light camera with an unknown pattern.

In principle, this work is closely related to the prim-
itive detection and segmentation in point clouds. How-

ever, a significant difference lies in the focus. In our work,

the objective is to obtain an estimate for the location

and the parameters that define an object as accurate as

possible. In contrast to that, the primary objective of

the detection methods lies in a fast, coarse segmentation,

typically with a strong focus on real-time applications.

There exists a large body of work on geometric prim-

itive detection for point clouds that have been cap-

tured with, for example, a structured light camera. A

review on point cloud segmentation can be found in

[18]. Poppinga et al. segment a scene into planes by

performing region growing on the 3-D point cloud [20].

The authors present an efficient method to calculate

least squares fits of planes to the points. The authors

of [12] extend this method by a multilateral filtering

step to increase robustness against measurement noise.

The authors also propose an alternative, less accurate

segmentation method to reduce computational complex-

ity. Trevor et al. reduce the number of plane fits by

segmenting the image first and only fitting planes to

regions which fulfill a size criterion [24]. Mörwald et al.

identify regions that can be modeled with B-Splines [17].

This method jointly uses range and color information to

calculate missing range information in the scene, which

may happen in pixels where the correspondence search

fails. Georgiev et al. propose to first search for line seg-

ments in the point cloud to reduce the search space [10].

In a second step, these line segments are analyzed and

combined to obtain the plane segments in the scene. In



4 Peter Fuersattel et al.

[6] a real-time capable, graph-based approach is pre-

sented. Graph nodes represent non-overlapping image

regions. These nodes are analyzed separately for pla-

narity and merged if they belong to the same segment.

Then, region growing is used to determine the exact

pixels which belong to the individual models. Borrmann

et al. present a new Hough transform accumulator for

3-D plane detection and compare it to other variants of

the Hough transform [5].

The plane estimate in the methods above is relatively

straightforward. It oftentimes consists of a least-squares

fit to the 3-D point cloud using singular value decompo-

sition or variants thereof. However, such a fast approach

is quite prone to outliers or other estimation errors.

All in all, applications can benefit from our method if

high accuracy is required, but runtime requirements are

somewhat less stringent.

One important difference to the methods above lies

in the fact that our approach does not operate on the

3-D points, but instead directly on the dot pattern of

the structured light sensor. This allows to jointly fit

several dots of the pattern to a geometric primitive, and

hence to avoid individual errors in the stereo matching

process.

The idea to directly operate on the dot pattern has

also been used in other applications. Fanello et al. pose

the correspondence search problem as a classification

problem, and solve it for each pixel individually with ran-

dom forests [21]. The projector pattern is obtained from
a calibration and training phase. One notable difference

of this work to ours is that we do not operate on each

dot individually. Instead, we include non-local cues by

jointly optimizing for all dots on one surface. McIlroy et

al. also operate directly on the dot pattern [15]. The

authors propose a low-cost tracker based on the Kinect

camera. The authors demonstrate how the projection

of the dot pattern onto a fixed multi-planar surface can

be used to determine the pose of the projector. We use

a similar idea, but we solve for the projection surface

using a fixed camera-projector setup.

Abstract representations of geometric primitives, e.g.

planes, have been used by a number of works on higher-

level vision tasks. Methods of this type can potentially

benefit from the high accuracy of the presented algo-

rithm. An extension of the work by Holz et al. [12] uses

a map of planes for localization or place recognition [7].

In [25], planes are used as features to create a map of

the environment. These planes are used to effectively

reduce the computational complexity of the mapping

process and to increase the accuracy of the map and

localization tasks. Birk et al. demonstrate how planar

surface patches can be used to estimate the robot motion

efficiently via a deterministic, non-iterative method [3].

Biswas et al. present a RANSAC-based plane segmenta-

tion for obstacle avoidance and navigation, which relies

only on depth information [4]. Taguchi et al. show that

the use of planes is important to achieve high frame

rates for 3D reconstruction with the Kinect sensor [23].

Salas et al. present a SLAM system that recovers the

boundaries of planes in the scene over time [22].

3 Notation

We denote images by bold capital letters, for example

image I. Bold lowercase letters denote vectors, for ex-

ample x = (X,Y, Z). If required, a superscript specifies

the coordinate system of the vector, for example, x(c)

denotes a point as seen from camera c.

Geometric primitives, for example planes, spheres or

cylinders, are represented as parametric 3-D models. All
parameters that describe such a model are summarized

in a parameter vector θ. In the case of a plane, we use

the Hesse normal form to describe a plane with four

parameters: three values to represent the unit normal,

and one value to represent the distance between the

origin and the plane.

A translation vector and a rotation matrix form the

rigid body transformation Rcp that, for example, relates
the coordinate systems of the camera and the projector.

We use Π to describe a projection from 3-D space to

the 2-D image domain. This projection is implemented

as a pinhole camera model, or a pinhole camera model

combined with a lens distortion model. Π−1θ describes

an inverse projection. In this work, inverse projections

are implemented as the intersection of a ray with a

parametric 3-D model defined by θ.

4 Calibration of the Structured Light Camera

and Reconstruction of the Dot Pattern

The complete calibration process is illustrated in Fig-

ure 2. We first describe the acquisition of a set of

calibration images in Section 4.1. In Section 4.2, we

demonstrate how a coarse initialization of the sensor’s

extrinsic parameters can be approximated. Next, we

create an initial reconstruction of the dot pattern as

described in Section 4.3. Hereafter, we show how the

initial parameters and the initial dot pattern can be

refined in a non-linear optimization scheme based on

multiple calibration images. The refinement is described

in Section 4.5.
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Fig. 2: Calibration process. Starting from a set of calibration images and camera intrinsics, the extrinsic parameters,

the intrinsic parameters of the projector and the unknown dot pattern are estimated.

4.1 Calibration Data and Reference Distance

Information

In this section we describe the calibration data and how

it can be acquired.

The calibration procedure requires at least two im-

ages, each consisting of a dot pattern image and a corre-

sponding point cloud. The images need to show multiple

planar scenes. The planes may be parallel but not copla-

nar.

A homogeneous white wall captured at different dis-

tances will ensure the best possible estimation of the

internal parameters and of the dot pattern. Generally,

more images captured at different distances will result

in better estimates.

The calibration protocol requires that the position

and orientation of an imaged plane is known. Theo-

retically, one can use the distance information of the

point cloud to estimate the plane model. However more

accurate plane models can be obtained with calibra-
tion patterns. The dot pattern is captured best in a

two-step process that consists of estimating the plane

with a calibration pattern, and removing the calibration

pattern before capturing the dot pattern.

In preliminary experiments, we have compared dif-

ferent calibration patterns with each other, including

checkerboards with ROCHADE [19] and RUNETags [1]

with the implementation provided by the authors. In

these experiments, checkerboards were detected over

a wider range of distances and more accurately than

RUNETags, which is why we use checkerboards.

4.2 Coarse Initialization of the Intrinsic and Extrinsic

Parameters

A first coarse calibration is obtained in two steps. First,

we estimate the relative position between projector and

camera Rpc. In the second step, we calculate the para-

x′1x′2

P C

x1x2

r2 r1

P

P′

b

Fig. 3: Initial baseline estimation. The rays ri generated

from two corresponding point pairs xi and x′i are used

to calculate the initial baseline b.

meters of a pinhole camera model that represents the

projector.

We slightly simplify the estimation of the relative po-

sition between camera and projector. Since the principal

rays of camera and projector are parallel in almost all off-

the-shelf structured light cameras, the spatial relation

Rpc of camera and projector reduces to a translation b.

We call b the baseline.

The estimation of the baseline is visualized in Fig-

ure 3. Here, the projector emits rays ri, that eventually

hit a plane. The illustration shows that the same ray ri
can also be calculated from two corresponding points

xi and x′i which lie on two different planes P and P ′.
Thus, the center of projection of the projector P , and

consequently the baseline b, can be computed by finding

the intersection of two or more rays.

For this step the intrinsic parameters of the cam-

era Πc are assumed to be known or that they can be

calculated in a separate calibration step [28].

The derivation requires that the positions of the two

planes P and P ′ are known. Their parameters can be
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x(p) = x(c) + b

P C

p(c)

p(p)

b

W
2

X(p)

Z(p)

f

Projector image

Observed image

Fig. 4: Focal length initialization. The projector’s focal

length fp is computed from the known camera intrin-

sics, a known plane and the initial baseline b. Shaded

areas visualize the two fields of view for camera C and

projector P .

estimated from the structured light depth measurements

or (preferred) from a calibration pattern attached to

their surfaces.

Point correspondences (xi,x
′
i) are obtained via block

matching. If camera and projector positions differ only

in the x-coordinate, the block search can be constrained
to the x-axis.

This approach can be extended easily to more than

two rays to increase the accuracy of the estimate. In

practice, five to ten rays were sufficient. Best initial-

izations are obtained if the correspondences are well

spread in the image, for example equally among the four

quadrants of the image.

The approximation of the baseline allows the estima-

tion of the pinhole model parameters of the projector.

We assume that the projector has an ideal lens and
that the principal point is at the image center. Hence,

finding the projector model reduces to estimating the

focal length.

We calculate the focal length such that a pixel that

is observed in a corner of the camera image is also

located in the same corner of the projector’s image.

Figure 4 illustrates this scenario. In order to capture

the complete observed pattern, we choose the corner

p(c) that corresponds to the projection of a 3-D point

x(c) =
(
X(c), Y (c), Z(c)

)
that maximizes the distance

to the projector. With x(p) = x(c) + b and its respec-

tive projection p(p), the focal length can be computed

directly with the pinhole camera model:

fp =

(
W − W

2

)
Z(p)

X(p)
. (1)

Computing fp requires the width W of the fixed

image to be known. In practice, W should be set to

P C

xi
(p) = Rpc

(
x
(c)
i

)

IS

P

p
(c)
ip

(p)
i

r
(p)
i

Fig. 5: Virtual image generation. The ray r
(p)
i for the

point p
(p)
i is intersected with the plane P to obtain x

(p)
i .

This point is transformed to the coordinate system of

the camera, and finally projected with Πc to get p
(c)
i .

a value equal or larger than the width of the camera

image.

The resulting focal length directly depends on the

distance between the observed plane and the camera,

with closer planes resulting in a smaller focal length.

Therefore, we use the calibration image with the smallest

plane-camera distance for calculating fp in order to

include the largest possible section of the projected dot

pattern.

4.3 Dot Pattern Reconstruction

In this section, we describe how the static image, that

the emitter projects into the scene, can be reconstructed.

We call the reconstructed image the virtual dot pattern

S. Below we describe how the intensities for all pixels

in S can be obtained from corresponding pixels in I by

using the previously calculated intrinsic and extrinsic

parameters.

The reconstruction process is visualized in Figure 5.

Here, the intensity for a point p
(p)
i is calculated from its

corresponding point p
(c)
i in I. The coordinates p

(c)
i are

obtained by intersecting ri with the plane, transforming

the intersection to the camera’s coordinate system, and

finally by projecting it onto the image plane. The inten-

sity in the virtual dot pattern at p
(p)
i is now interpolated

from I. This is expressed by interp(·). Mathematically,

the intensity lookup for a single pixel of S is given by

S
(
p
(p)
i ,θ

)
= interp

(
I,p

(c)
i

)
= interp

(
I, Πc

(
Rpc

(
Π−1p,θ

(
p
(p)
i

))))
.(2)

The estimation of the initial dot pattern can be ex-

tended to use multiple images, analogously as described

in Section 4.2. However, similar as in Section 4.2, it
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turned out that a coarse estimate of the pattern is suffi-

cient if an additional refinement step is performed.

4.4 Virtual Image Generation

With known dot pattern, extrinsic and intrinsic para-

meters, it is possible to generate a virtual image V of

a parametric model. In the context of the calibration,

the goal is to generate a virtual image of a plane in

the calibration scene. To this end, we use the inverse

reconstruction pipeline given in Equation 2, with Rcp

being the inverse of Rpc. The plane is defined by θ. By

using the previously calculated virtual dot pattern S as

source for the lookup, pixel values for all coordinates

p
(c)
i can be obtained:

V
(
p
(p)
i ,θ

)
= interp

(
S, Πp

(
Rcp

(
Π−1c,θ

(
p
(c)
i

))))
.

(3)

Note that the image generation pipeline expressed

in Equation 3 allows the adjustment of all parameters

which describe either the scene or the structured light

sensor. This property will be exploited for refining the

sensor parameters and the initial virtual dot pattern

in Section 4.5. Also note that although the calibration

operates on planes, the application of the refinement can

operate on arbitrary geometric structures that can be

formulated as a parametric model. The sole requirement

is the implementation of a method which calculates the

intersection of a ray with the respective model.
The virtual image generation can be parallelized as

all pixel values can be computed independently. De-

pending on the used geometric primitive and camera

properties additional simplifications may become pos-

sible. For example, if planar regions are refined and

lens distortion is negligible, then the mapping between

dot pattern and virtual image can be represented by a

homography.

4.5 Optimization of Intrinsic Parameters and the Dot

Pattern

The coarse calibration is based only on a small number of

point correspondences. During refinement, the complete

image information of M calibration images is utilized to

obtain more accurate intrinsic and extrinsic parameters

as well as a more accurate reconstruction of the dot

pattern. We assume, that if the true sensor parameters

are known, then it is possible to create virtual view of

the scene that is identical to the observed camera image.

We use gradient descent to refine the rigid body

transformation Rcp, focal length fp of the projector and

the dot pattern S as seen from the projector. In each

iteration, two steps are performed: first, the refinement

of the extrinsic parameters and the focal length, and

second, an update of the dot pattern. This iteration is

visualized in Figure 2.

Gradient descent requires a cost function to measure

the dissimilarity of two images. To this end, we calculate

the mean squared differences between an observed image

I and a virtual image V , which itself depends on a

particular fp and Rcp.

To increase the comparability, each pixel is normal-

ized by the mean value of its neighborhood. This can be

implemented efficiently using integral images. The cost

function for a normalized image I ′ and its corresponding

normalized virtual image V ′ is given by

eRcp,fp(I,V (θ)) =
1

N

N∑
i

(
I ′i − V

′
i (θ)

)2
. (4)

In this equation, N denotes the number of pixels. We

obtain the gradients numerically by altering the current

parameters individually by small deltas. Note that the

pixel-wise differences and the required normalization

prevent the usage of analytic derivatives.

Once the gradients are known, the current parameter

set is adjusted and used to estimate a new dot pattern.

From each of the M calibration images, a dot pattern

Sj is derived as outlined in Section 4.3. The updated

dot pattern S′ is computed as the pixel-wise median

image, i.e.,

S′ = median ([S1,S2, . . . ,SM ]) . (5)

The median filter limits the impact of sensor noise on the

dot pattern reconstruction. During the next iteration,

S′ will serve as the current dot pattern S.

The optimal parameter set, consisting of R∗cp, f∗p
and S∗ can be obtained by minimizing Equation 6. The

function minimizes the dissimilarity between the M

normalized virtual views V ′j of known planes with their

corresponding normalized observations I ′j .

(
R∗cp, f∗p ,S

∗) = argmin
Rcp,fp,S

 M∑
j

eRcp,fp

(
I ′j ,V

′
j(θj)

)(6)

With the aforementioned method, the projector pa-

rameters, baseline, rotation and dot patterns can be

estimated and saved for future use. Recalibration is only

required if the camera/projector setup changes which

typically does not occur during operation.
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5 Geometric Primitive Detection

The refinement method requires an initial estimate of

the object’s model whose parameters should be refined.

There are various approaches for obtaining such an

initialization, for example a complete decomposition of

the point cloud into geometric primitives, or a semi-

automatic segmentation which is based on seed values

or a region of interest. In Section 2, we listed example

works for finding different primitives like planes [20,12,

24] or B-spline models [17].

In this work we do not put any constraints on how

the initial parameters for a particular model are ob-

tained. Instead, we only require a parameter vector θ

that describes the model analytically. In this work, three

different models are investigated: planes, cuboids and

spheres. A general limitation of the proposed method is

that it assumes that the geometric model is a sufficiently

accurate representation of a pre-segmented area of the

scene. Situations where, for example, parts of the primi-

tive are occluded by another object, have to be addressed

in a separate processing step. In our implementation,
we used masks to ignore such outlier regions.

6 Geometric Primitive Refinement

The core idea of the refinement algorithm is to create a

virtual view of the object. If all parameters that describe

the object are either known or correctly estimated, the

virtual view matches the observed image. Hence, the

objective is to estimate the unknown parameters in a

way that minimizes the deviations between the virtual

view and the observed image.

For generating a virtual view, a complete model of

the imaging system is required. In this section, we as-

sume that the intrinsic parameters of the camera and

the projector, their spatial relation and the projected

dot pattern have already been calculated with the cali-

bration procedure described in Section 4.

The parameters of an object in the scene, for example

a plane, are summarized in the parameter vector θ.

In this context, we assume that there exists an initial

estimate of the object which is obtained by some initial

detection algorithm. In this section, we present how

these parameters can be further improved, such that

their virtual view matches the observed image more

accurately.

The optimal model parameters θ∗ are obtained via

nonlinear optimization. Similar as during calibration,

we use a gradient descent approach to find the optimum.

A metric e is used to measure the dissimilarity between

the observed image I of a camera and a virtual image

V (θ). Here, we reuse a slightly altered version of the

error metric defined in Equation 4. In the optimization

phase of the calibration procedure, this error metric is

used to find R∗cp and f∗p based on fixed plane model

parameters. During refinement of object parameters, we

fix the camera’s system parameters and vary the object

parameters θ. Therefore, the dissimilarity in terms of

the mean squared error for a given θ is defined as:

eR∗cp,f∗p (I,V (θ)) =
1

N

N∑
i

(
I ′i − V

′
i (θ)

)2
. (7)

The goal of the refinement step is to find parameters

θ∗ that maximize the similarity (or minimize the dis-

similarity, respectively) between I and V (Rcp,θ). More

precisely, we seek

θ∗ = argmin
θ

(
eR∗cp,f∗p (I ′,V ′(θ))

)
. (8)

Several effects, like scene texture, varying surface

reflectance, or the angle of incidence at lateral surfaces

may negatively affect the optimization in Equation 8.

Thus, to increase the robustness of the optimization, we

first normalize each pixel by dividing it by the mean

value of its neighborhood. This can be implemented

efficiently using integral images. Let I ′ and V ′ be the

normalized images of I and V . Then, Equation 8 be-

comes

θ∗ = argmin
θ

(
eR∗cp,f∗p (I ′,V ′(θ))

)
= argmin

θ

(
1

N

N∑
i

(I ′i − V
′
i(θ))2

)
, (9)

which can be optimized via gradient descent. We ob-

served that a number of outliers can be expected at

the border of a segment. Thus, applying an additional
erosion to the segment boundaries increases the overall

accuracy of the estimate.

7 Evaluation

This section presents a thorough evaluation of the pro-

posed method. We evaluate three different aspects of

the method: its accuracy with respect to varying scenes,

the impact of the calibration data and its applicability

to different geometric primitives.

We use planar segments in our accuracy study, as

calibration patterns allow a highly accurate estimation of

the reference planes for quantitative evaluation. In this

study, we compare our method to the results of a least-

squares fitting method for planes. In these experiments,

we investigate the influence of the distance between

camera and plane, the impact of the size of the refined

plane, the robustness with respect to texture and the
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(a) Angle error (b) Distance error

Fig. 6: Normal angle and distance parameter errors. The red plot shows the error before refinement, black the error

after refinement. Crosses and dots show the individual results. The shaded area reflects the standard deviation.

With the proposed method, the plane parameters can be refined effectively.

impact of the maximum number of iterations for the

refinement.

The second part of the evaluation contains a study

of different aspects of the calibration procedure. In this

context, we evaluate the impact of the number of cali-

bration images that are used for calibrating the system.

Additionally, we investigate how well the calibration

results generalize with respect to distances which have

not been covered during the calibration.

Finally, we evaluate the proposed method for two

other primitives to demonstrate its applicability for

geometric models other than planes. In these examples,

initial estimates of spheres and cuboids are refined such

that both their position and model parameters become

more accurate.

In this evaluation, an Orbbec Astra structured light

camera is used. The camera comes with a generic factory

calibration which is used for all camera models, inde-

pendent of individual model variations. For achieving

the highest possible accuracy, we have estimated the

intrinsic parameters for the specific camera using [28]

and [19].

7.1 Evaluation Data Sets and Experimental Setup

The system is calibrated with a set of 25 calibration

images that show a white wall at distances ranging from
0.7 m to 1.7 m. The wall is approximately perpendicular

to the optical axis. Accurate reference planes are cal-

culated from checkerboard patterns which are removed

before capturing the dot pattern.

Four different data sets with different scenes are used

in this evaluation. The first dataset is captured similarly

as the calibration data and consists of 70 images of

a white wall at distances ranging from ∼ 0.65 m to

∼ 1.75 m. We denote this data set as the wall data set.

The individual images are evenly spread throughout the

evaluated distance range. For each image the ground

truth plane is estimated with a checkerboard. Before

capturing the dot pattern, the checkerboard is removed

from the scene.

The texture data set consists of images that show six

boards with different surface properties. This data set

is used to investigate the robustness of the refinement

method with respect to texture and surface properties.

Two additional data sets contain images of spheres

and boxes respectively. The ball data set contains 40

images of a white coated ball with a radius of 10.5 cm

from different perspectives and at different distances.

The cuboid data set contains 40 images of a wooden box

with 32.4 cm × 26.4 cm × 10 cm. The box is captured

at various poses, such that different faces point towards

the camera. The initial detection methods for spheres

and planes are described in Section 7.8 and Section 7.9.

In the case of planes, we evaluate results by compar-

ing the plane parameters with the ground truth planes

before and after refinement. Note that the ground truth

planes are calculated from checkerboards, and thus are

accurate only up to some uncertainty. However, pre-

liminary results showed that the uncertainties of the

checkerboard-based plane estimates are at least 5 times

smaller than the remaining errors of our refinement

results.

We use the following notation to describe the results:

the angle between the directions of the evaluated normal

and ground truth normal is denoted by α. The difference

between the distance parameter of the evaluated and

ground truth plane is represented by ∆d. The subscripts

i and r refer to the initial and the refined values. During

optimization, no information from the checkerboard is

used.

The initial plane estimates are obtained with the

probabilistic plane segmentation by [12]. This method
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segments the scene into its individual planar segments.

The segmentation method calculates a least squares fit

for each planar segment, as well as a mask that delimits

the particular segment. We use the proposed method to

refine the initial estimate of the plane model. In this step,

only valid pixels of the segment’s mask are considered.

During optimization, observed and generated vir-

tual images are normalized pixel-wise by their mean

(window-size 11 pixels). By default, up to 60 iterations

are performed during optimization with gradient de-

scent. Optimization terminates early when the mean

squared error for all optimized pixels changes by less

than 10−5 during one iteration.

7.2 Distance Between Plane and Camera

The first experiment aims at evaluating the impact of

the distance between the camera and the plane. In this

evaluation we analyze the deviations of the normal vec-

tor and the distance parameter for both the initialization

and the refined model.

We use the wall data set for this experiment. The

images are subdivided into 10 cm wide bins with respect

to the distance from the center pixel. In the resulting

Figure 6, we show the mean deviation from the reference

normal as an angle and the difference between the dis-

tance parameters averaged over all planes that belong

to a specific bin.

The results show that by using the proposed method,

the error of the least squares plane estimate can be

reduced across almost the complete range. The distance

parameter is always improved by more than 30 %. In

the close-range, our method fails to improve the normal

direction and returns slightly worse normals than the

initialization. We explain this with the saturation of the
projected pattern. Whenever the camera gets very close

to the wall, and thus to the limits of its operational

range, the spatial extent of the individual dots of the

pattern grows until they eventually merge. Once the

camera has a certain distance (> 0.8 m) to the wall, the

proposed method reliably improves the initial direction

of the normal. As the distance increases, improvements

by 60 % and more are possible (> 1.6 m).

7.3 Influence of the Size of the Plane Segment

Another interesting characteristic is the relationship be-

tween accuracy and segment size. The proposed method

exploits the information of all pixels that belong to a

plane segment. Therefore, it can be expected that higher

accuracies become possible if more pixels are used during

Fig. 7: Average error reduction for different segment

sizes. This plot shows the accuracy gains for the normal

and the distance for segments which cover a specific

area of the total image.

refinement. We study this relationship with the images

of the wall data set.

We iteratively increase the segment size by 5 % start-

ing from 5 % of the complete image region. All segments

are positioned in the image center. Figure 7 shows the

average gains across all images. For the whole range of

segment sizes, the accuracy of the distance parameter
of the initial plane models can be improved by ≈ 40 %.

Assuming a correct normal angle, a wrong distance pa-

rameter would evenly affect all evaluated pixels due to

wrong disparity values. In contrast, the direction of the

normal affects all pixels of the plane differently. This

effect can be noticed best at the border regions of the

segments, and will be even more distinct if these regions

cover large portions of the image. This explains why

the accuracy gains for the normal direction decrease for

smaller segments. Segments with at least 40 % of the

image size still allow improvements of ≈ 30 %, while it
is barely possible to refine segments that cover less than

25 % of the image.

Another interesting observation can be made from

this plot: for segments that cover 50 % to 60 % of the

image region, the best accuracies can be computed. A

possible explanation for this effect is inhomogeneous

scene illumination of the projector. Following this argu-

mentation, we think that the central 50 % to 60 % of the

image is illuminated best, and thus offers more informa-

tion for optimization than the outer image regions.

7.4 Maximum Number of Iterations

In the current, simple implementation the optimization

terminates if the preset 60 iterations are reached or if

the cost function does not change by more than 10−5.

These parameters need to be adjusted depending on the

required refinement accuracy.
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Fig. 8: Similarity metric vs. number of iterations. Only

little accuracy gains are possible after more than 30

iterations.

Seg. αi αr ∆di ∆dr

1 1.68◦ 1.35◦ −19 % 0.66 cm 0.35 cm −47 %

2 0.72◦ 0.59◦ −17 % 1.02 cm 0.41 cm −60 %

3 1.37◦ 0.95◦ −31 % 0.50 cm −0.09 cm −81 %

4 1.59◦ 1.20◦ −25 % 0.87 cm 0.74 cm −15 %

5 1.33◦ 1.01◦ −24 % 0.85 cm 0.53 cm −37 %

6 1.22◦ 0.88◦ −28 % 0.75 cm 0.34 cm −54 %

Avg. 1.32◦ 1.0◦ −24 % 0.76 cm 0.41 cm −46 %

Table 1: Normal and distance refinement for textured

surfaces. ∆α and ∆d are the deviations from the refer-

ence normal and distance. φ is the ratio of the initial

value and the refined value.

The following experiment investigates the decrease

of the average cost function across the iterations with

the wall data set. We evaluate the results after fixed

numbers of iterations, starting with 0 (no refinement), to

60 iterations. The results of this experiment are shown

in Figure 8. The figure shows how the similarity metric,

in our implementation the mean squared difference of

intensities, decreases with additional iterations. No large

gains in accuracy can be observed after more than 30

iterations.

7.5 Performance on Textured Surfaces

In this section the robustness with respect to surface

properties is evaluated. In this example, the texture data

set is used. The scene, shown in Figure 9, consists of

six different boards with different, challenging surfaces,

which are placed on a table. Table 1 shows the results of

this experiment. The reference plane of the planar seg-

ments is calculated with a checkerboard pattern ahead

of the experiment.

For all planar segments the least-squares plane fit

parameters, that are returned by the method of Holz

et al. [12], can be refined with the proposed method.

Segment 3 is, due to its strong texture, one of the more

challenging examples in this evaluation. Even in this

case the plane’s normal direction and distance can be

refined by 31 % and 81 % respectively. Additionally huge

accuracy gains for the distance parameter are possible.

Another challenging example is the highly specular black

segment (segment 2) for which the deviation from the

reference plane can be reduced by 17 % for the normal

direction and 60 % for the distance parameter. On av-

erage, the direction of the normal can be improved by
24 % and the distance parameter by even 44 %.

7.6 Number of Calibration Images

The number of required calibration images directly af-

fects the calibration effort. In this experiment, we order

the calibration images (see Section 7.1) by their distance

at the center pixel. From this list, N images are sampled

uniformly to cover the complete calibration range. Each

of the resulting sets is used as input to the proposed

calibration method.

In this experiment, all images of the wall data set are
refined with different calibrations. For each calibration,

we calculate the average of all final cost function values

to measure how well the final virtual image matches the

observed image. Figure 10 shows the results of this ex-

periment for N = {2, 3, 5, 10, 15, 25} calibration images.

As expected, more calibration images will also in-

crease the overall accuracy of the algorithm. However,

it is also valid to trade accuracy for the amount of effort

one would like to invest during calibration. Even with

only a few images, for example less than ten, consider-

able improvements are possible. With a metric value of

0.129 for the initializations, gains of more than 40 % are

already possible with only five calibration images and

almost 50 % with 25 images.

7.7 Importance of Calibrating the Whole Range of

Operation

Goal of this experiment is to investigate the possibility

to get refined plane parameters at distances which are

not covered during calibration. This is an important

question as it also directly affects the calibration effort

and the re-usability of calibration data.

For this evaluation, we reused the ordered list of

calibration images of Section 7.6. From this list, we

draw the first ten images for calibration, which results

in a range from 0.70 m to 1 m. This calibration is used

to refine the planes of the wall data set.
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(a) Color photo (b) Infrared image (c) Z-Image (d) Segments

Fig. 9: Scene with six differently textured plane segments. Figure (a) shows a top-down color photography of the

scene, (b) shows the infrared image captured by the camera, (c) shows the corresponding z-image (distances in

meters) and (d) shows the plane segments which are determined during initialization. The results for the individual

segments are given in Table 1. The segments 1,3,5 and 6 have a low specularity, segment 4 is moderately specular

and segment 2 has high specularity.

Fig. 10: Mean squared intensity differences for different
numbers of calibration images. For reference: the initial

mean squared error, without refinement, equals 0.129.

In Figure 11 we compare the residuals for two differ-

ent set of calibration images: first all calibration images

and, second the close range subset. The impact of the

limited calibration range is not very severe, but can

be observed nonetheless. The error of the normal di-

rection increases for planes that are more distant than

1.2 m as shown in Figure 11a. The distance parameter

(Figure 11b) is very stable, leading to barely noticeable

differences between the two calibration sets.

For calibration with the close range subset, one could

even argue that the distance parameter, gets even more

accurate within the range of the calibration data. We

hypothesize that the dot pattern, which has been derived

during calibration, resembles the observed pattern in this

range best. In contrast, the other dot pattern will likely

reflect the observed patterns of the complete calibration

range.

7.8 Evaluation on Spheres

This experiment evaluates the performance of the pro-

posed method with respect to refining the position and

the radius of spheres. Spheres are represented in terms

of a center point and a radius, thus θ consists of four

unknowns: (cX , cY , cZ , r).

The initial spheres have been estimated with RAN-

SAC with a distance threshold of 2.5 mm. Using smaller
thresholds for RANSAC results in less robust initial esti-

mates as the discretization error of the camera is larger

than a millimeter. The 3-D points which were included

in the estimation process have been obtained from a

tightly selected rectangular region of interest around

the sphere. Furthermore, all pixels which belong to the

background plane have been identified with the plane

segmentation method by Holz et al. [12] and excluded

from the estimation process, thus resulting in a set of

points with only very few outliers.

Table 2 reports the experimental results for the

spheres data set. In the table, we list the absolute dif-

ference between the true radius of the sphere and the

radius of the respective estimate. The average absolute

error of the radius accounts for almost a millimeter for

the RANSAC estimate. With the proposed refinement

method, this error can be reduced by more than 50 %

to 0.46 mm.

Figure 12 shows four examples taken from the data

set. For these examples, the projector has been tem-

porarily disabled for capturing an image without the

overlaying dot pattern. In all cases, the initial RANSAC

estimates are improved such that the resulting spheres

match the observed spheres more closely. The noise,

which is observable in both examples, stems from the

low illumination in the infrared spectrum whenever the

emitter is disabled.
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(a) Angle error (b) Distance error

Fig. 11: Normal angle and distance parameter errors for a subset of calibration images. Only the 5 images with the

smallest distance between camera and wall have been used for calibration. The results of the subset are shown in

blue, the results of all calibration images (red) are shown for reference. Stars and dots are used to show individual

results.

(a) (b) (c) (d)

Fig. 12: Qualitative examples from the spheres data set. The green overlays represent the difference between the

mask of the initial detection and the refined sphere. In all examples the initial sphere position and radius have

been refined to a more accurate parameters which truly match the observed image.

Method Mean Abs. Err. + Std.Dev

RANSAC 0.933± 0.760 mm

RANSAC + Proposed 0.455± 0.420 mm

Table 2: Errors for initial sphere detection and remaining

errors after refinement.

7.9 Evaluation on Cuboids

Cuboids are another interesting primitive that can be

refined with the proposed method. In this evaluation we

represent a cuboid by its dimensions (length × width ×
height) and its position in terms of a rigid body trans-

formation that relates the cuboid’s coordinate system

with the coordinate system of the camera. Consequently,

θ contains nine parameters that need to be refined.

The method is evaluated on the cuboid data set.

Figure 13 shows four selected examples of this data set.

The figures show the contours of the initial and refined

cuboid models in blue and green respectively.

The initial cuboid is found in a three step process:

first the top plane and floor plane are detected. Second,

the dimensions of the cuboid are obtained. In the last

step, the rotation and translation between the cuboid

and the camera is calculated.

The top plane is calculated with the plane segmen-

tation method by Holz et al. [12], initialized with a seed
coordinate on the top of the box. The floor plane is

calculated from all points, except for those points who

support the top plane, via RANSAC. For the estimation

we assume that the floor is parallel to the top plane of

the box and consequently fix the normal to be identical

to the top plane’s normal. As the floor resembles the

majority of the point cloud, the floor plane estimates

are very accurate.

Length and width of the box are calculated as the

two major dimensions of the minimum bounding box

of all pixels that support the top plane. The height

is obtained by calculating the distance of one of the

cuboid’s top corner coordinates to the floor plane.
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(a) (b) (c) (d)

Fig. 13: Qualitative examples from cuboid refinement from the cuboid data set. The contours of the initial and

refined cuboid are outlined in blue and green respectively. The examples show that a more accurate initialization

leads to more accurate results. The box dimensions and positions in (a) and (b) are refined noticeably. The

refinement result in (c) shows an improvement from the initial detection, but still has a small offset at the left

contour. The initial estimate in (d) has inaccurate rotation parameters which can only be corrected to some extent.

However, the dimensions of the box have been adjusted to more accurate parameters.

The cuboid’s coordinate system is defined such that

the origin is centered in the cuboid, with the coordinate

axes aligned with the length, width and height dimen-

sions of the cuboid. This enables an easy calculation of

the cuboid’s corner coordinates in its own coordinate

system. The rotation and translation is calculated from

corresponding corner coordinates with Horn’s method

[13].

In this evaluation, we measure the error of the cuboids

detection as the sum of the absolute differences from

the true values.

The average error of the initial detections equals

0.94 cm. After refinement, this error is reduced by ap-

proximately 30 % to 0.66 cm. Note that this error metric

does only consider the dimensions of the boxes but not

their position with respect to the camera. For the task
of dimensioning, the box position may be only of sec-

ondary interest, however, for localization tasks refined

spatial information turn out to be equally important as

the cuboid’s dimensions.

7.10 Runtime

The runtime for refining a single object depends on

the number of pixels the object covers, the maximum

number of iterations and the number of parameters

that are required to describe the object. Out of these

factors, the last has the largest impact, as calculating

the derivatives numerically requires to render the the

object multiple times in each optimization iteration. In

our implementation we calculate the central difference,

which results in the generation of two virtual images

per parameter.

We have evaluated our two variants of our imple-

mentation on a consumer notebook. The first variant

only uses the Intel I7-4700 CPU, whereas the second

variant generates the virtual image on the GPU (Nvidia

750M) in a simple CUDA implementation. The runtime

experiments have been conducted with the wall data

set, which consists of planes that fill the complete field

of view. As the number of iterations per image may

vary due to early stop criteria in the gradient descent

optimizer we only provide measurements for the average

time required for a single iteration.

The CPU implementation requires on average 340 ms

per iteration, which involves the generation of nine vir-

tual images (eight for the central differences of the the

four parameters, plus one image for evaluating the up-

dated parameters). In this implementation we use the

complete rendering pipeline, without any approxima-

tions like a plane-to-plane mapping based on homogra-

phies (see Section 4.4). By moving the rendering process

to the GPU, the runtime for a single iteration could be

reduced to 40 ms, resulting in a speedup of more than 8.

We believe that the runtime can be reduced even further
if all features of the GPU would be exploited (interpola-

tion and texture memory). An additional speedup could

be achieved by porting the complete optimization to the

GPU.

8 Conclusion

In this paper we have presented a novel method for

refining model parameters for geometric primitives by

exploiting the dot pattern of structured light sensors.

The method exploits that knowing the exact pa-

rameters of a geometric primitive in the scene allows

to re-render the primitive such that the rendered im-

age is identical to the camera image of the structured

light sensor. Unlike regular fitting methods, which work
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on individual 3-D point measurements, the proposed

algorithm uses all pixels that belong to the geomet-

ric primitive simultaneously. Furthermore, the a priori

knowledge of the object shape helps to constrain the

optimization problem.

As a prerequisite to the estimation of the geometric

primitive, we present a robust calibration method for

off-the-shelf structured light cameras like the Microsoft

Kinect or the Orbbec Astra. With the proposed method,
the unknown camera dot pattern, the projector’s focal

length, and the extrinsic parameters between camera

and the projector can be calculated from a small set of

calibration images.

We exemplarily demonstrate the performance of

the proposed method on plane segments, spheres and

cuboids. In the case of planes we use a state-of-the-art

plane detection method to find planar segments in the

scene. Next, the parameters of these initial planes are
refined with the proposed method. It turns out that the

method can robustly and highly accurately estimate the

normal angle and the distance of a plane segment. For

example, we show in our segmentation that plane pa-

rameters of highly reflective and diffuse planar segments

can be improved by more than 60 % for the normal

direction and up to 30 % for the distance parameter.

The proposed method is very robust towards texture,

plane distance and the size of the plane segment. Also in

these very challenging scenarios, the performance gain

is in a comparable order of magnitude. In the case of

spheres and cuboids, the initially found parameters can

be improved by up 50 % and 30 % respectively.
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