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Introduction

In rotational X-ray scans angular effects overlap with respiration-
iInduced changes. Conventional respiratory signal extraction

* only provides 1D signals used for binning [1]

* multiple features restricted to static angle acquisition [2]

Aim:
» obtain volumetric information within 2D projection images
* bilinear decoupling of features related to
a) rotation and
b) respiration
» drive a respiratory motion model [3] with the respiratory features

Material and Methods

X-ray projection p; ; € RN® at acquisition angle ¢; € [0; 2m) and
respiratory phase t; € [0;1):
Pij = R, v; vi=Ma;+7
/ \ 1 1
X-ray transform RN *N° volume RV PCA motion representation
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Fig. 1: Variation in projections caused by respiration in 3D and/or by changes in the viewing angle (left).
Volumetric respiratory changes can be modeled using PCA on the displacement fields of a prior 4D CT (right).
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Model Training

* pased on forward >
projected prior 4D CT NI —
* projection data tensor
D € RN*XFXG \V
* Higher-order SingL_JIar D = I A
Value Decomposition NExFxG  Nexixg  Fxi

Fig. 2: HOSVD [5] reduces the G projections angles and F
respiratory phases to rotational and respiratory feature
space of lower dimensionality g and f.

(HOSVD) [4,5]

Feature Estimation (from previously unseen projection image py ;)
» prior knowledge: B-spline interpolation of rotation weights from

viewing angle q5
¢ R ¢min

b(u) = Z b;N;(u) ; .

* respiratory welght estimation reduces to a linear problem
M = o x, b(u(¢)) € RV >/

u(¢) =

¢max

Results and Discussion

Linear PCAof 4D CT

Exp. 1: Feature Comparison

* bilinear respiratory weights
match the linear PC scores of
the 4D CT (Fig. 3) except for
dimension offset (due to | | — |
missing mean subtraction) e e, e e

Bilinear respiratory weights
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Exp. 2: Decompose Projections ol

* remove angle and phase from
data tensor (leave-one-out) 02

* corresponding X-ray image Is e
decomposed by the model and o 15 s0_ 85 100 85 50, 15
subsequently rebuilt (Fig. 4).

respiratory phase
» mean gray-value error: 3.01%

feature weights
o

Bilinear rotational weights

Exp. 3: Drive 4D Motion Model

* regression of leave-one-out
estimated features to PC [
scores of 4D CT (see QR) )

» mean error of 25 to 100 HU
(depending on patient)

feature weights
o
- o

&
no

&
o

SD 80 90 12[] 150 180 210 240 27’0 300 330 |
rotation angle

Fig. 3: Scores of the first few principal components

for linear PCA on the 4D CT (top), bilinear

respiratory (middle) and rotational weights (bottom).
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Fig. 4: Example reconstruction for 85% exhale phase at 234 angle. (a) Original DRR sample. (b) Leave-one-out
bilinear reconstruction. (c) Dierence image with level/window 0.15/3.75. (d) Rotational weights from dense
bilinear model and interpolated weights for the loo estimation. (e) Respiratory weight estimate.
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Conclusion

Extracted bilinear features are suitable to drive a respiratory motion
model independent of the X-ray acquisition angle.

Challenges
» leave-one-out evaluation doesn’'t consider inter-fractional change
» patient-specificity requires prior 4D CT

Outlook: Towards respiration-aware X-ray guided interventions
* population-based anatomical model & 4D atlas of motion patterns
» |landmark-based fitting
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