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• Model-based iterative reconstruction (MBIR) is promising for reducing CT 

radiation dose while maintaining image quality

• Shows strong potential for clinical applications [1],[2]

• MBIR formulation typically includes non-negativity constraint motivated 

by physics of X-ray attenuation

• Our focus: Impact of the non-negativity constraint on image appearance 

and convergence speed under different scenarios based on real CT data

• Objective function: 

• Penalized least squares

• Data fidelity as squared residual without statistical weights

• Potential function is either quadratic or edge-preserving and is applied 

to voxel differences in x,y,z-direction

• Non-smooth indicator function enforces non-negative values 

• Optimization algorithm: FISTA with constant step size [3]
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Figure 1: Ground truth of 

reconstruction with edge-

preserving regularization and non-

negativity constraint. Central z-slice 

of 3-D volume after 5000 iterations.

(a) Module A of ACR phantom.

(b) Module D of ACR phantom.
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Convergence behavior with full view sampling Convergence behavior with sparse view sampling 

Figure 5: Convergence behavior for reconstruction of module A with full view sampling (left) 

and sparse view sampling (right). RMSE is calculated inside the phantom including its 

edges. Same curves are observed for module D.

• Non-negativity constraint might not offer any benefit for conventional 

diagnostic CT imaging

• Could help for reconstructions under challenging conditions like sparse 

view sampling

• Without non-negativity constraint simpler optimization algorithms are 

allowed which could result in less computational effort for the 

reconstruction

• Results have to be verified with a wider range of objective functions and 

optimization algorithms, and a more complex anthropomorphic object 

with several air cavities

• State-of-the-art clinical CT system using a 360° circular scan trajectory:

• Reconstruction:

• Eight imaging scenarios: 

• Two test objects: ACR CT phantom module A for alignment and CT 

value accuracy, and module D for high contrast spatial resolution

• Full view sampling or sparse view sampling of projection data

• Edge-preserving or quadratic potential function for regularization
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Table 1: Summary values of 

difference images. Measured inside 

the phantom, in HU.

Figure 2: Difference images for 

reconstruction with and without non-

negativity constraint.

(a) Module A, edge-preserving reg.

(b) Module D, edge-preserving reg.

(c) Module A, quadratic reg.

(d) Module D, quadratic reg.
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Figure 3: Difference images, as above.

Table 2: Summary values, in HU.

Figure 4: Profile plot for setting (c). 

Edge crossing from water to air, in HU.

Sparse view sampling


