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Abstract—Model-based iterative reconstruction is a promising
approach to achieve dose reduction without affecting image
quality in diagnostic X-ray computed tomography. In the problem
formulation, it is common to enforce non-negative values, which is
motivated by physics but narrows down the choice of optimization
algorithm. In this work, we report on experiments assessing the
impact of the non-negativity constraint on image quality and
reconstruction speed. The assessment is performed under eight
scenarios that challenge the usefulness of the constraint. These
include reconstructions from full and sparse view sampling, with
quadratic or edge-preserving regularization, for two different
objects. Our results show that improvements due to the non-
negativity constraint are strongly scenario-dependent, and likely
negligible for conventional full view CT imaging. This implies that
for specific reconstructions, the non-negativity constraint could
be disregarded to simplify the optimization problem.

I. INTRODUCTION

A lot of the research in clinical computed tomography (CT)
is driven by the aim to reduce radiation dose while maintaining
image quality. One promising way to achieve this goal is
model-based iterative reconstruction (MBIR). Its potential for
diagnostic CT imaging was shown in recent studies [1]–
[4]. A popular MBIR formulation is penalized least squares
reconstruction [5], which includes two key components: (i)
the data fidelity term, which is characterized by the choice
of a forward projection model and the option of a statistical
weighting of the projections; (ii) the penalty term, which
defines a regularization process with a potential function and
additional incorporation of a priori knowledge, such as the
non-negativity constraint.

To get the most out of the MBIR approach, it is valuable to
understand the impact of each component and its subparts. For
that reason, Thibault et al. have examined different potential
functions for the regularization when they first introduced
the concept of MBIR [5]. As another example, Hahn et
al. have compared linear interpolation models for iterative
CT reconstruction in various imaging scenarios [6]. In our
previous work, we focused on the effect of statistical weights,
which was analyzed using a lesion detection study with human
observers [7].

The purpose of this paper is to look at the impact of the non-
negativity constraint. Since the attenuation coefficient of X-
rays is known to be positive, this constraint appears very natu-
ral, and its use is reinforced by knowledge that reconstruction
without it leads to non-physical negative attenuation values,
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likely due to inaccuracy of the forward projection model and
noise in the projection data. Our primary question of interest
is about quantifying the impact of the constraint in regions of
the image that are within the object. To our knowledge, this
question has not been thoroughly addressed in the context of
MBIR from real CT data.

II. BACKGROUND

MBIR from CT data is formulated as optimization of a
convex objective function. The optimization requires a ded-
icated algorithm that is consistent with the characteristics of
this function. These two aspects are covered in the following
subsections.

A. Objective Function

Let ~x ∈ RN be a discrete vector for the 3-D reconstruction
volume and ~p ∈ RM a discrete vector for the measured
projection data. Our objective function F consists of three
parts: the data fidelity term f , the regularization term g with
its hyper parameter β ≥ 0, and the indicator function ιR+

:

F (~x) = f(~x) + β g(~x) + ιR+(~x). (1)

To ensure the data fidelity, we use the squared residual be-
tween the forward projected reconstruction and the projection
data:

f(~x) =
1

2
‖A~x− ~p‖22. (2)

The forward projection is modeled using Joseph’s method [8].
It is a ray driven approach that provides a good compromise
between accuracy and computational cost [6]. The forward
projection process is symbolized by matrix A. The matching
back projection operator is written as its transpose, AT .

To reduce the noise in the reconstruction, a regularization
term is used that is defined as

g(~x) =

N∑
i=1

N∑
j=1

wijψ(xi − xj), (3)

with wij = 1 for the neighbors of each voxel found in the three
Cartesian directions and wij = 0 otherwise. ψ is the potential
function that assigns a cost to the difference between each
voxel and one of its neighbors. We use two different potential
functions for two different reconstruction scenarios, namely a
quadratic and an edge-preserving potential function that can
both be fine-tuned with δ > 0:

(i) ψ(t, δ) =
t2

2δ
,

(ii) ψ(t, δ) =
√
t2 + δ2 − δ.

(4)



Parameter δ controls the importance given to differences
between neighboring voxel values. Both choices for ψ are
convex and differentiable, which implies that they are easy
to handle for an optimization algorithm.

When we enforce non-negative voxels for our reconstruction
result, the indicator function ιR+

is part of the objective
function. This non-negativity constraint is defined as

ιR+
(~x) =

{
0 if xi ∈ R+

+∞ otherwise
. (5)

B. Optimization Algorithm

Because the indicator function is non-smooth, it has to be
processed via its proximal operator. This means the optimiza-
tion algorithm needs to be able to minimize a convex objective
function that consists of a smooth and a proximable part. The
fast iterative shrinkage-thresholding algorithm, also known as
FISTA, meets these demands [9]. It requires only one gradient
evaluation per iteration. The pseudocode of FISTA applied to
our reconstruction problem is shown in Algorithm 1. We chose
the version of FISTA with a fixed step size λ. The convergence
is guaranteed for λ < 1/L, where L is the Lipschitz constant
for the gradient of the smooth part, f + β g, of our objective
function. The non-negativity constraint is enforced in line 3 of
the algorithm. Because the proximal operator of an indicator
function of a given set is the orthogonal projection operator
onto the same set,

proxιR+ (~x) =

{
xi if xi ∈ R+

0 otherwise
. (6)

In the pseudocode we use the shorter symbol (·)+ instead of
proxιR+ (·).

Algorithm 1: FISTA with constant step size
Input: Parameters β ≥ 0, λ > 0 and initial image ~x0.

1 ~y1 = ~x0, t1 = 1

2 for k = 1, 2, . . . do

3 ~xk = (~yk − λ(AT (A~yk − ~p) + β(∇g)(~x)))+

4 tk+1 =
1 +

√
1 + 4t2k
2

5 ~yk+1 = ~xk + (
tk − 1

tk+1
)(~xk − ~xk−1)

If we do not apply the non-negativity constraint, ιR+
is

not used and our objective function is purely smooth. In this
case, the algorithm simplifies itself to Nesterov’s accelerated
gradient descent [10]. The only change in the presented
pseudocode is that the operation (·)+ disappears from line 3.
The convergence condition for the step size is the same as in
FISTA.

III. EXPERIMENTAL SETUP

To evaluate our reconstruction method, experiments were
carried out on a state-of-the-art clinical CT system. An

overview of the scanner geometry can be found in Table I. The
X-ray tube was operated at 80 kV and 500mAs. We have used
a circular trajectory scan with a flying-focal-spot (FFS) in the
x,y-plane that records 2304 projection images distributed over
360°. We refer to this setting as full view sampling. To create a
second scenario that is more challenging for the reconstruction
algorithm, we also consider using only every 4th projection
image taken from one of the two focus positions. This results
in 1/8th of the original projection data and represents a sparse
view sampling.

TABLE I
PARAMETERS OF SCANNER GEOMETRY

Source to detector distance 108.56 cm
Source trajectory radius 59.5 cm
Anode angle 7°
Number of detector channels 736
Angular detector width 0.067 864°
Number of detector rows 8
Detector row height at isocenter 0.06 cm
Number of projections 2304 (full view sampling)

288 (sparse view sampling)

The ACR CT accreditation phantom (model 464, Gammex-
RMI, Middleton, WI, USA) was scanned as a test object. It
has a cylindrical shape with a 20 cm-diameter and a length of
16 cm. The phantom is divided into four different modules
of which we have looked at two for our study. The first
one, called module A, has five cylinders representing the
attenuation behavior of bone, polyethylene, water, acrylic, and
air, respectively. Also two ramps are included that consists
of small bars which are visible in 0.5mm z-axis increments.
The module can be used to assess positioning and CT number
accuracy. The second one, called module D, contains eight
aluminum bar patterns with up to 12 lp/cm. The bar patterns
provide very high contrast relative to the background and are
used to assess the spatial resolution for high contrast objects.
During the scan, each module was centered on the rotation
axis, and the plane of the source trajectory passed through the
middle of the module.

All reconstructions were done on a grid of 512× 512× 16
voxels centered at the isocenter of the scanner. The voxel size
was 0.1 cm in x and y, and 0.06 cm in z. The radius for the
field of view (FOV) in the x, y-plane was set to 25 cm. 5000
iterations of the reconstruction algorithm were calculated and
after every 25th iteration the intermediate result was saved. As
initial reconstruction volume we used ~x0 = ~0. The chosen step
size λ was based on the Lipschitz constant of the data fidelity
term, L(f). This can be calculated as the largest eigenvalue of
ATA using the power method [11]. To account for g, we used
λ = 0.95/L(f) and the knowledge that L(g) � L(f). For
the full view sampling this means λ = 0.000065, and for the
sparse view sampling, it is λ = 0.00052. The hyper parameter
β is also linked to the size of the projection data. For the
full view sampling we used β = 0.1; for the sparse sampling,
which has 1/8th of the full projection data, we used β = 0.0125
so that the amount of applied regularization is comparable
for the different data sets. The value for the parameter of
the potential function was empirically chosen as δ = 0.0005



for the quadratic regularization and δ = 0.001 for the edge-
preserving regularization

To summarize, we have four different projection data sets
that differ in the scanned object and the number of projections,
and for reconstruction we use two different regularizers. This
results in eight reconstruction scenarios for which we compare
the result with and without the non-negativity constraint.

To assess the image quality, difference images between
the result with and without non-negativity constraint were
calculated. Where needed, profile plots through the difference
image were created. Note that the result of the reconstruction
is a 3-D volume, of which we only analyze one of the central
slices for simplification. As figure of merit for convergence,
we used the root-mean-square error (RMSE). To ignore the
irrelevant structures outside of the phantom, a binary mask
was applied with a radius of 10.5 cm that only contains the
ACR module including its edges. The RMSE was calculated
within the binary mask for the central six z-slices of the
reconstruction. The final result after 5000 iterations was used
as ground truth.

IV. RESULTS

The results are separated into two parts. We first present the
outcome of the experiments for the projection data with full
view sampling, and then the results for the sparse view pro-
jection data. The results are focused on difference images and
convergence speed. Fig. 1 shows how some reconstructions
appear prior to computing differences.

(a) (b)

(c) (d)

Fig. 1. Ground truth for reconstruction with edge-preserving regularization
and non-negativity constraint after 5000 iterations. (Top row) full view
sampling, (bottom row) sparse view sampling. Module A (left) and module
D (right) are both displayed with a grayscale of [−200, 200] HU.

A. Full View Sampling of Projection Data

Fig. 2 shows the difference images between the reconstruc-
tion with non-negativity constraint and without. On the basis of
the displayed grayscale window of [−2, 2] HU, no significant
differences are observed inside the phantom, for both phantom
modules and both potential functions. The summary values
given in Table II confirm this visual impression.

(a) (b)

(c) (d)

Fig. 2. Difference images for reconstruction with and without non-negativity
constraint. These images are for full view sampling of module A (left) and
module D (right). The applied potential function is either edge-preserving
(top) or quadratic (bottom). Grayscale window: [−2, 2] HU.

Convergence according to the RMSE value is presented
in Fig. 3. The results for the different scanned modules are
similar. For the first 100 iterations, there is no difference in the
convergence behavior with and without non-negativity. In the
later iterations, differences in the RMSE can be observed when
using the quadratic potential, whereas the curves essentially
remain the same when using the edge-preserving potential.
For the quadratic potential, we thus see a gain in convergence
speed when enforcing non-negativity; this gain is observed for
a small improvement in an already small RMSE.

B. Sparse View Sampling of Projection Data

The difference images for the sparse view sampling are
shown in Fig. 4. For the edge-preserving regularization, in
Figs. 4(a) and (b), the difference inside the phantom is a
noisy pattern with little to no structural information. For the
quadratic regularization, in Figs. 4(c) and (d), the differences
inside the phantom show a noisy pattern with enhancement of
the edges with the sharp objects. Compared to the results with
full view sampling, a larger grayscale window was required for
display. This visual impression is confirmed by the summary
values in Table II. The profiles through the edge of the air
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Fig. 3. Convergence behavior for reconstruction with full view sampling of
module A (top) and module D (bottom). A solid (resp. dotted) line is used
for reconstruction with and without the non-negativity constraint (resp.). The
potential function is either edge-preserving (blue) or quadratic (orange).

cylinder in module A are compared in Fig. 5, where we see
that the non-negativity constraint leads to a slightly sharper
profile, though the difference is tiny and likely not significant
for a human observer.

The convergence behavior is depicted in Fig. 6. It has the
same characteristics as seen in Fig. 3, showing that the non-
negativity constraint does not impact convergence speed for
the edge-preserving regularization, but does impact it, at a
similar rate, for the quadratic regularization.

TABLE II
MINIMUM, MAXIMUM, MEAN, AND STANDARD DEVIATION OF THE

DIFFERENCE IMAGES. ALL VALUES ARE IN HU AND MEASURED INSIDE
THE PHANTOM.

Min. Max. Mean SD

Full view sampling
Module A, edge-preserving reg. -1.50 1.85 -0.02 0.03
Module A, quadratic reg. -0.20 0.05 -0.05 0.03
Module D, edge-preserving reg. -1.61 1.36 -0.09 0.09
Module D, quadratic reg. -0.79 0.35 -0.12 0.10

Sparse view sampling
Module A, edge-preserving reg. -13.02 11.29 -0.08 1.09
Module A, quadratic reg. -29.17 26.45 -0.14 3.77
Module D, edge-preserving reg. -42.90 38.98 -0.16 3.56
Module D, quadratic reg. -47.39 54.89 -0.26 7.01

V. DISCUSSION AND CONCLUSIONS

In this work, we have reported results assessing the impact
of the non-negativity constraint on image appearance and
convergence speed under eight different scenarios based on

(a) (b)

(c) (d)

Fig. 4. Difference images for reconstruction with and without non-negativity
constraint. These images are for sparse view sampling of module A (left) and
module D (right). The applied potential function is either edge-preserving
(top) or quadratic (bottom). Grayscale window: [−20, 20] HU.
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Fig. 5. Profiles through the edge of the air cylinder in module A for
reconstruction with quadratic regularization and sparse view sampling. The
profiles show the voxel value for the edge crossing from water to air, in HU.

real CT data. These scenarios were selected to challenge the
potential usefulness of the non-negativity constraint.

Our observations in terms of image quality were as follows.
For experiments with full view sampling, we observed that the
use of the non-negativity constraint has only minimal impact
on the image appearance inside the object. This was the case
for both quadratic and edge-preserving regularization. The
differences were on the order of 1-2 HU, and thus would likely
have no effect on human observer performance.

For the more challenging problem of reconstruction from
sparse view sampling, we observed more important differ-
ences: (i) enhancement of sharp edges, indicating a slight
difference in resolution for sharp-contrast features, (ii) a noisy
pattern inside the object. The difference in resolution is not
likely to be significant for human observer performance but the
noisy pattern might; this aspect requires further investigation.
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Fig. 6. Convergence behavior for reconstruction with sparse view sampling
of module A (top) and module D (bottom). A solid (resp. dotted) line is used
for reconstruction with and without the non-negativity constraint (resp.). The
potential function is either edge-preserving (blue) or quadratic (orange).

Also of importance is the observation that the differences are
of a fairly smaller magnitude for reconstruction with edge-
preserving regularization.

In terms of convergence speed, we only identified benefits in
using the non-negativity constraint for reconstruction with the
quadratic penalty. In this case, the same benefit was observed
for both full and sparse view sampling. However, this benefit
plays a role only for improving the convergence when the
RMSE is already small (below 1HU).

Overall, we conclude that the non-negativity constraint
may not offer any benefit for conventional diagnostic CT
imaging, but could possibly slightly help for reconstruction
under challenging conditions like sparse view sampling. To
further verify this conclusion, a wider range of objective
functions and reconstruction algorithms should be examined.
Also, the outcome of our experiments could be affected by
the choice of the phantom. A more complex anthropomorphic
object with several air cavities (e.g., as encountered in lung
imaging of patients with COPD) should be the basis for further
investigations.

From an algorithm viewpoint, it is important to know that
there are situations where the non-negativity constraint has
little impact on image quality, because, for these situations, the
choice of the optimization algorithm would not be restricted
to those that can handle the non-smooth indicator function for
non-negative values. This can have an impact on reconstruction
speed.
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