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Abstract. Speech intelligibility for voice rehabilitation can successfully be eval-

uated by automatic prosodic analysis. In this paper, the influence of reading er-

rors and the selection of certain words (nouns only, nouns and verbs, beginning

of each sentence, beginnings of sentences and subclauses) for the computation

of the word accuracy (WA) and prosodic features are examined. 73 hoarse pa-

tients read the German version of the text “The North Wind and the Sun”. Their

intelligibility was evaluated perceptually by 5 trained experts according to a 5-

point scale. Combining prosodic features and WA by Support Vector Regression

showed human-machine correlations of up to r = 0.86. They drop for files with

few reading errors, however, but this can largely be evened out by feature set

adjustment. WA should be computed on the whole text, but for some prosodic

features, a subset of words may be sufficient.
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1 Introduction

Established methods for objective voice and speech evaluation in therapy analyze only

sustained vowels. In our approach for the assessment of speech intelligibility, the test

persons read a given standard text that undergoes prosodic analysis. Usually, each

prosodic feature has been averaged over all words in the text. However, it is widely

known that intelligibility varies among different word classes which is mostly caused

by prosodic properties [1–5]. Hence, putting all content and function words, long and

short words, and words at different positions in sentences, together bears the risk of los-

ing information. In previous work [6], the influence of the position and type of words,

which are selected from a read-out text, on the reliability of the automatic analysis has

already been addressed. However, this was restricted to single prosodic features. The

word accuracy (WA) of a speech recognizer has also been used as basic measure for

intelligibility [7, 8]. It has also always been computed for an entire text sample. In this

follow-up study, the suitability of the WA computed on subunits of a text will be ex-

amined, and the combination of these features and prosodic features by Support Vector

Regression will be presented for the first time. It has further been shown that the auto-

matic analysis is influenced by the number of reading errors in the sample [6]. This will

be tested for the new feature sets. These main questions are addressed in this paper:
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– How can prosodic features and the word accuracy together model the human intel-

ligibility rating when they are computed on different subparts of a standard text?

– Does the number of reading errors in a speech sample have an influence on the

human and automatic intelligibility rating?

This work is organized as follows: Section 2 introduces the test data and the percep-

tual evaluation reference. The computation of the features is described in Sect. 3. The

results of the experiments (Sect. 4) will be discussed in Sect. 5.

2 Test Data and Subjective Evaluation

73 German subjects with chronic hoarseness participated in this study (Table 1). Pa-

tients suffering from cancer were excluded. Each person read the text “Der Nordwind

und die Sonne” (“The North Wind and the Sun”, [9]), a phonetically rich standard text

which is frequently used in clinical speech evaluation in German-speaking countries.

It contains 108 words (71 distinct) with 172 syllables. The data were recorded with a

sampling frequency of 16 kHz and 16 bit amplitude resolution using an AKG C 420 mi-

crophone (AKG Acoustics, Vienna, Austria). They were recorded in a quiet room in our

university and digitally stored on a server by a client/server-based system [10, Chap. 4].

The study respected the principles of the World Medical Association (WMA) Decla-

ration of Helsinki on ethical principles for medical research involving human subjects

and has been approved by the ethics committee of our clinics.

Five voice professionals (one ear-nose-throat doctor, four speech therapists) evalu-

ated the intelligibility of each original recording perceptually. The samples were played

to the experts once via loudspeakers in a quiet seminar room without disturbing noise or

echoes. Rating was performed on a five-point Likert scale. For computation of average

scores for each patient, the grades were converted to integer values (1 = ‘very high’,

2 = ‘rather high’, 3 = ‘medium’, 4 = ‘rather low’, 5 = ‘very low’). For each patient, an

intelligibility mark, expressed as a floating point value, was calculated as the arithmetic

mean of the single scores. These marks served as ground truth in our experiments.

Table 1. The test speakers (entire set, group with few and group with many reading errors)

group persons age reading errors

all men women µ σ min max µ σ min max

overall 73 24 49 48.3 16.8 19 85 3.10 3.50 0 17

low-error 32 9 23 48.5 13.7 26 76 0.34 0.47 0 1

high-error 41 15 26 48.1 18.9 19 85 5.24 3.34 2 17

Due to reading errors, repetitions, and additional remarks, such as “read now?”, the

recordings did not only contain words appearing in the text reference but also additional

words and word fragments. In order to describe the errors, a manual word-based count-

ing of errors was adopted (see details in [6, 7]). In order to study the effect of errors

on the evaluation on subsets of reasonable size, the overall data set was divided into a
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‘low-error’ group with at most one reading error per speaker and a ‘high-error’ group

with 2 to 17 errors per speaker (Table 1). The left side of Fig. 1 shows that there are

also low-error readers with a bad perceptual ranking. The human intelligibility rating

and the number of reading errors are just weakly correlated (r = 0.35).

3 Prosodic Features

The speech recognizer used for the experiments [11] is based on semi-continuous Hid-

den Markov Models (HMM). For each 16 ms frame, a 24-dimensional feature vector

is computed. It contains short-time energy, 11 Mel-frequency cepstral coefficients, and

the first-order derivatives of these 12 static features. The recognition vocabulary of the

recognizer was changed to the 71 words of the standard text. Only a unigram language

model was used so that the results mainly depend on the acoustic models.

In order to find counterparts for intelligibility, a ‘prosody module’ was used to

compute features based upon frequency, duration, and speech energy (intensity) mea-

sures. The prosody module processes the output of the word recognition module and

the speech signal itself. ‘Local’ prosodic features are computed for each word position.

Originally, there were 95 of them. After several studies on voice and speech assessment,

however, a relevant core set of 33 features has been defined for further processing [12].

The components of their abbreviated names are given in parentheses:

– Length of pauses (Pause): length of silent pause before (–before) and after (–after),

and filled pause before (Fill-before) and after (Fill-after) the respective word

– Energy features (En): regression coefficient (RegCoeff) and the mean square error

(MseReg) of the energy curve with respect to the regression curve; mean (Mean)

and maximum energy (Max) with its position on the time axis (MaxPos); absolute

(Abs) and normalized (Norm) energy values

– Duration features (Dur): absolute (Abs) and normalized (Norm) duration

– F0 features (F0): regression coefficient (RegCoeff) and mean square error (MseReg)

of the F0 curve with respect to its regression curve; mean (Mean), maximum (Max),

minimum (Min), voice onset (On), and offset (Off) values as well as the position of

Max (MaxPos), Min (MinPos), On (OnPos), and Off (OffPos) on the time axis; all

F0 values are normalized.

The last part of the feature name denotes the context size, i. e. the interval of words

on which the features are computed (see Table 2). They can be computed on the current

word (W) or in the interval that contains the second and first word before the current

word and the pause between them (WPW). A full description of the features used is

beyond the scope of this paper; details and further references are given in [11, 13].

Besides the 33 local features per word, 15 ‘global’ features were computed for inter-

vals of 15 words length each. They were derived from jitter, shimmer, and the number

of detected voiced and unvoiced sections in the speech signal [13]. They covered the

means and standard deviations of jitter and shimmer, the number, length, and maximum

length of voiced and unvoiced sections, the ratio of the numbers of voiced and unvoiced

sections, the ratio of the length of the voiced sections to the length of the signal, and the

same for unvoiced sections. The last feature was the standard deviation of the F0.
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The human listeners gave ratings for the entire text. In order to receive also one

single value for each feature that could be compared to the human ratings, the average

of each prosodic feature over all selected words served as final feature value.

Table 2. Local prosodic features; the context size denotes the interval of words on which the

features are computed (W: one word, WPW: word-pause-word interval).

features context size

WPW W

Pause: before, Fill-before, after, Fill-after •

En: RegCoeff, MseReg, Abs, Norm, Mean • •

En: Max, MaxPos •

Dur: Abs, Norm • •

F0: RegCoeff, MseReg • •

F0: Mean, Max, MaxPos, Min, MinPos, Off, OffPos, On, OnPos •

4 Experiments

Earlier experiments averaged each prosodic feature over the entire read-out text. For

this study, we examined whether the restriction to certain subsets might be beneficial:

– averaging over all words (the baseline; 108 words, denoted by the suffix ‘ all’)

– nouns only (24 words, ‘ nouns’)

– nouns and verbs (44 words, ‘ n+v’)

– beginnings of sentences (first 3 words of each of the 6 sentences; 18 words, ‘ sent i’)

– beginnings of sentences and subclauses (first 3 words of each of the 6 sentences

and 10 subclauses; 48 words, ‘ s+s i’)

Nouns and verbs were chosen because content words generally show less pre-

dictability and hence intelligibility than function words, such as articles, prepositions,

and conjunctions [14]. Adjectives were not taken into account because there are very

few in the text. These words contribute to intelligibility mainly because of their stress

patterns, one of the main aspects the prosodic features were designed for. The begin-

nings of sentences and subclauses, without the regard of the word classes, were chosen

with respect to the medical application. Many voice and speech patients show higher

speaking effort and shorter phonation time, so they will have to pause more often and

fragment the paragraph to be read. Breaks usually occur at syntactic boundaries.

In former studies [7, 8], the word accuracy (WA) of a speech recognizer was an im-

portant feature to model intelligibility. It is computed from the comparison of the rec-

ognized word sequence and the reference text consisting of the nall = 108 words of the

read text. With the number of words that were wrongly substituted (nsub), deleted (ndel)

and inserted (nins) by the recognizer, the word accuracy in percent is given as

WA = [1− (nsub + ndel + nins)/nall] · 100 .
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In this study, it is also added to the feature set, but just like the prosodic features, several

versions of it will be used for the first time: besides WA all, computed on all words of

the text, there is also WA nouns, WA n+v, WA sent i, and WA s+s i.

In order to find the best subset of WA and the prosodic features to model the subjec-

tive intelligibility ratings, Support Vector Regression (SVR) was applied. For this study,

the sequential minimal optimization algorithm [15] of Weka [16] was applied. Due to

the small amount of available data, a 10-fold cross-validation was used. For the regres-

sion, the automatically computed measures (WA and all prosodic features) served as

the training set. The test set consisted of the subjective, perceptual intelligibility scores.

Due to the small amount of data, we also refrained from using deep learning technology.

5 Results and Discussion

The first experiment was performed using the different word accuracy types as a single

feature. The human-machine correlation showed the best results for WA all (r = –0.74,

first part of Table 3). The other values are – in some cases substantially – lower.

The next part of the table shows a comparison of the correlations for the best single

prosodic features, as determined in [6], and the predicted intelligibility of the SVR when

all prosodic features were put together. The single features could compete with the WA

results, the combination of all prosodic features achieves substantially better values.

The best result was r = 0.84 for all features being averaged over all words.

The next lines of Table 3 show the use of prosodic features from a subtext scenario x

supplemented either by WA all or WA x. These results are even better than for the

prosodic features alone. In general, WA all contributes better to the human-machine

agreement than the WA from the other scenarios (with two non-significant exceptions).

WA all and prosodic features obtained on the whole text achieved r = 0.86. The right

side of Fig. 1 shows this case. The ‘real’ ratings can only be between 1 and 5. If the

predicted values outside that range are replaced by the possible minimum and maximum

values (i. e. in our data 0.909 by 1, 5.714 and 6.023 by 5), the correlation does not

improve, however. Without the outlier at position (0.909, 2.400), the correlation for the

low-error files would rise from 0.74 to 0.80.

Computing the prosodic features on a lower number of words keeps the human-

machine agreement at a high level in general, with the best result for sentence and

subunit beginnings ( s+s i) where only a drop in correlation of ∆r= 0.01 is measured.

Next, the influence of the reading errors on the combined feature set was examined.

The low-error files show significantly lower correlations, just like for single features [6],

while for the high-error files, the results stay at about r = 0.80 if WA all is used.

Table 4 contains the regression weights for the case that all 73 speech samples are

used in the SVR. The baseline is given in the first data column, i. e. using WA all and the

prosodic features computed on all words. WA all shows a consistently high weight in

all setups. The other WA x for the respective scenarios x show lower weights on the av-

erage. WA nouns is not even part of the best set for the whole database. The same holds

for WA sent i and WA s+s i on the low-error files. Like in a similar study with a slightly

different SVR setup on the all scenario [8], also the duration feature DurNormWPW,

representing the speaking rate, becomes important in some cases. Further, the F0 value

at voice offset (F0OffW) appears in some sets. It likely resembles voice quality and
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stability. Similar information may be inherent in #+Voiced, i. e. the number of voiced

segments, that appears in the sets for the sent i and s+s i cases (when using WA all).

The new results mostly confirm the earlier study [6] that identified single prosodic

features with a high human-machine correlation. Pause–before and the regression coef-

ficient of the energy in a word-pause-word interval (EnRegCoeffWPW) were in the new

tests not among the best sets, however. The normalized duration of a word-pause-word

interval (DurNormWPW) has also been a good indicator for intelligibility in earlier stud-

ies and could mostly replace the energy EnNormWPW [7]. Here, it plays only a minor

role. Both DurNormWPW and Pause–before reveal the overall speaking rate.

EnNormWPW is a good indicator for intelligibility [6, 7, 11]. Especially for low-

error reading, a selection of words from the text lowers the correlation to the perceptual

scores, however. MeanJitter showed the highest correlation of all in [6], namely r = 0.73

for low-error reading and the n+v case. In this new study, it is present in all scenarios.

In a final experiment, all features from all scenarios were combined. The best sub-

set comprised EnNormWPW all, F0OffW all, MeanJitter n+v, and WA all, achieving

r = 0.86 for the whole data set. In this case only the MeanJitter n+v had to be com-

puted for only 44 words and the other features for all 108 words. So the benefit of

restricting the word set for computation seems too small to be useful. However, with

these features, the correlation was r = 0.73 for the low-error and r = 0.87 for the high-

error files. With MeanJitter all, only r = 0.59 had been measured on the low-error files,

so the use of mixed scenarios ( all, n+v) shows on the average the most stable results

for all tested cases.

We are aware of the problem arising when standard texts are used for measuring

intelligibility. However, it was shown that text-based evaluation performed by trained

listeners is as reliable as an inverse intelligibility test, where naı̈ve raters write down a

previously unknown word sequence read by the test person. For more details, see [6].

As a conclusion, it can be stated that the word accuracy (WA) should always be

used in a feature set for intelligibility assessment, and it should be computed on the full

text while it is sufficient to compute some of the prosodic features only on the first three

words of a sentence and subclause. Only WA n+v and the n+v prosodic features give

a slightly better result than WA all and n+v features for low-error files. The n+v case

already showed the best results for single prosodic features [6]. The influence of many

reading errors is a positive one at first sight since the human-machine correlation is

better for samples with many errors. However, Fig. 1 (left) shows that the low-error files

are concentrated on a much smaller perceptual range than the high-error files. Hence,

it is more difficult to find a feature set mapping these small differences. More effort

has to be put on this in the next experiments. Future work also includes tuning of the

SVR parameters. Preliminary tests changing the kernel parameter C in a range of 0.01

to 1000 have shown no better results, however.
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