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Abstract—Scatter affects every computed tomography (CT)
image. Calibration-free software scatter reduction methods
have not been used extensively in practice. Recently, consistency
conditions have been applied successfully to other artifact
reduction problems in CT imaging. We propose a scatter
reduction method, that uses an epipolar consistency condition
(ECC) to estimate parameters of an additive scatter model.
We evaluate our approach by comparing it with an image-
based empirical scatter correction method (ESC) that uses the
same scatter model. We show that it performs equally well on
simulated data. Further, ECC outperforms ESC regarding the
computational load for the determination of the parameter
models, because ECC is formulated in projection domain
such that no image reconstruction is necessary. While some
restrictions might apply for the stability of ECC on measured
data, no prior information needs to be formulated regarding
the reconstructed image, like it is required with ESC.

I. INTRODUCTION

Scatter is caused by two different physical effects [1]. On
the one hand, photons are scattered (change their direction)
at particles that are much smaller than the wavelength of
the radiation. This is known as Rayleigh scattering. On the
other hand, the Compton effect describes incoherent scat-
tering, where a scattered photon looses energy, increasing
its wavelength. These effects contradict the assumption of
reconstruction algorithms that the measured radiation solely
consists of primary radiation. Therefore, the image quality
is reduced. To weaken the effect, hardware- and software-
based scatter reduction methods are applied [2].

Reference-less software methods aim to estimate the
scatter radiation using a suitable scatter model and a cost
function to estimate its parameters. Monte Carlo simulations
are the well known gold standard to estimate the scatter com-
ponent precisely. However, the simulation is computationally
demanding. The situation can be improved by performing a
very coarse Monte Carlo simulation and using the result to
fit a scatter model [3]. Alternatively, a scatter model can be
fitted by optimization of a cost function in image domain,
for example by the minimization of the total variation (TV).
Meyer et. al [4] show that this is possible without successive
reconstruction steps by exploiting the linearity of the Radon
transform.
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Recently, a new consistency condition based on redundant
plane integrals was presented [5], [6] and has been suc-
cessfully applied for geometry calibration [6], [7], motion
compensation [8] and beam-hardening reduction [9].

We derive an algorithm using the epipolar consistency
condition to estimate the parameters of a scatter model.
The model we use was introduced by Ohnesorge et. al [10]
and modified by Meyer et. al [4] to take the form of a
linear combination. We exploit the results of Würfl et. al [9]
to derive a closed-form solution that can be computed
efficiently.

II. METHODOLOGY

In section II-A, we detail the model that we use to estimate
the scatter component. In section II-B, we derive a closed-
form solution to the estimation problem that uses the ECC
as a cost function. In section II-C, we point at some insights
that we gained from the model.

A. Model

Throughout this paper, we assume that scatter can be
reduced using the additive model in line integral domain,
that has been used by Meyer et. al [4]. The scatter-reduced
raw-data p is given by

p = q −
N∑

n=1

wnsn, (1)

where q denotes the measured raw data. We need to estimate
the raw-data scatter components sn along with the weights
wn.

As the source for scatter resides in intesity domain, we
need to estimate the scatter intensity Is to obtain the scatter
components sn. The scatter intensity consists of an intensity
model If that is convolved with a model for the scatter point
spread function. The intensity model is given by

If = αpIp, (2)

where Ip = e−p and α is a scale parameter that depends on
the scatter cross section. From If , the scatter component in
intensity domain can be calculated as

Is = If ∗
[
exp

(
x+ β

γ

)
+ exp

(
x− β
γ

)]
, (3)

where β and γ determine the shape of the scatter point
spread function and x denotes the spatial location on the
detector.



(a) ECC [Ip] (b) TV [Ip] (c) TV without mask [Ip]

(d) ECC [Iq] (e) TV [Iq] (f) Iq - Uncorrected

Fig. 1: Results for the inverse crime scenario using the the proposed ECC-based method and the TV-based approach. The
notation [Ip] denotes that the ideal projection data has been used to generate the scatter components (see Eq. (2)), whereas
[Iq] denotes that the projection with simulated scatter has been used instead.

To enable a linear estimation using the ECC, we obtain
the scatter component in line integral domain by

s = − ln (Is + Ip) + ln (Ip)

= − ln

(
Is
Ip

+ 1

)
.

(4)

Eq. (1) already indicates that we use N of those scatter
components to find the scatter-free image p. We denote a
specific scatter component that is obtained from parameters
(αn, βn, γn) as sn. Note that this model assumes that the
ideal, scatter-free data Ip is known to create the scatter
components. This is generally not the case. A common
solution is to apply any algorithm relying on this model
in a fixed-point iteration scheme. Throughout the following,
we only consider a single iteration of this algorithm.

B. Estimation
Given two X-ray projections, any plane which contains

both source positions intersects the detectors in so-called
corresponding epipolar lines. Epipolar consistency states that
the derivative orthogonal to their common plane is identical
in either image:

∂

∂t
ρp0 (l0) =

∂

∂t
ρp1 (l1) . (5)

Here, (ρp0
, ρp1

) denotes the Radon transform of a pair of
projection images (p0, p1), (l0, l1) denote intersection lines
of an epipolar plane with the corresponding detector planes
and ∂

∂t denotes the derivative of the Radon transformed
projections perpendicular to the lines.

We combine the additive scatter model (Eq. (1)) with
Eq. (5) to receive

∂

∂t
ρ(

q0−
∑N

n=1
wnsn,0

) (l0) = ∂

∂t
ρ(

q1−
∑N

n=1
wnsn,1

) (l1) ,
(6)

where (sn,0, sn,1) are the n’th scatter components of the
projection image pair (q0, q1). Because the Radon transform
and the derivative operator are linear, we reuse the idea of
epipolar consistency guided beam hardening reduction [9]
and rewrite Eq. (6) to

q′0 (l0)−
N∑

n=1

wns
′
n,0 (l0) = q′1 (l1)−

N∑
n=1

wns
′
n,1 (l1) , (7)

where we substituted q′i = ∂
∂tρqi

and s′n,i = ∂
∂tρsn,i

,
i ∈ [0, 1]. Unfortunately, the scatter components sn are not
linear in the parameters (see Eqs. (2), (3) and (4)). Therefore,
we follow the idea from empirical scatter correction [4],
generate N different estimates of the scatter components and
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Fig. 2: Normalized absolute intensity difference of line
profiles to the ground truth.

assume that they behave as a basis for the space of scatter
components. In section II-C, we point out, that this approach
has theoretical drawbacks. However, our experiments (sec-
tion III) reveal that it performs well in practice.

In order to estimate the coefficients wn, we optimize
for consistency, such that the scatter components remain
constant:

min

[(
N∑

n=1

wns
′
n,0 (l0)− s′n,1 (l1)

)
− q′0 (l0)− q′1 (l1)

]2
.

(8)
So far, we stated the problem for (l0, l1), which cor-

responds to one epipolar plane and one pair of projection
images. We want to solve this problem for K planes lkp,i
across P pairs of projection images. Therefore, we have
M = PK measurements, producing an overdetermined
system of linear equations:

ŵ = argmin
w
‖Aw − b‖22 (9)
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Fig. 3: Region (green) that has been used to estimate SSIM
and PSNR (see Fig. 4) and line (red) along which the profiles
have been calculated.
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Fig. 4: Performance of our (ECC) and the TV-based method
in terms of PSNR and SSIM. 0% improvement means that
there is no improvement over the volume with simulated
scatter. The measures have been computed in 2D within the
region depicted in Fig. 3.

where

A =



a1,1,1 . . . a1,1,N
...

. . .
...

a1,K,1 . . . a1,K,N

a2,1,1 . . . a2,1,N
...

. . .
...

aP,K,1 . . . aP,K,N


with

ap,k,n = s′n,p,0
(
lkp,0
)
− s′n,p,1

(
lkp,1
)

and

b = [b1,1, . . . , b1,K , b2,1, . . . , bP,K ]
>

with

bp,k = q′p,0
(
lkp,0
)
− q′p,1

(
lkp,1
)
.

Note that the columns of A are linearly independent.
Therefore, the solution to Eq. (9) is given by

ŵ = (A>A)−1A>b = A+b. (10)



C. Discussion

Typically, such linear combinations of basis images are
applied in the domain where the artifact arises. However, this
model using scatter basis functions in line integral domain is
not equal to a linear combination of scatter basis functions
in intensity domain (see Eq. (1)). To investigate this, we
transform the linear combination

∑
n wnsn to intensity

domain:∑
n

wn ln (Is,n) =
∑
n

ln
(
Iwn
s,n

)
= ln

(∏
n

Iwn
s,n

)
. (11)

This result shows that the linear combination in raw data
domain does not correspond to a linear combination in
intensity domain.

III. EXPERIMENTS

We present two simulation experiments using the Forbild
head phantom. We show the performance of the proposed
algorithm in two inverse crime scenarios and compare the
results to the method proposed by Meyer et. al that mini-
mizes the total variation in volume domain, instead of the
epipolar consistency in projection domain.

A. Setup

For the experiments, we define a feasible param-
eter range β ∈

[
βl = 1e−2, βu = 1.5e−2

]
, γ ∈[

γl = e−3, γu = 1e−2
]
. The parameter α remains fixed at

α = 4e−10. We use N = 4 scatter basis images such that
(βn, γn) ∈ (βl, βu)× (γl, γu). The simulated scatter image
is generated with βsim = 1.2e−2, γsim = 8e−3. For the first
simulation experiment, we generate the scatter components
using the ideal projection intensity Ip (see Eq. (2)). The
results of this experiment are annotated with [Ip]. For
the second simulation experiment, we use the projection
intensity with simulated scatter Iq for the scatter components
and annotate the results with [Iq].

B. Results

The results of our experiments are summarized in Fig. 1.
We find, that both methods yield visually comparable results
when Ip is used to generate the scatter components (Figs. 1a
and 1b). However, both methods produce worse results,
when Iq is used instead (Figs. 1c and 1d).

Fig. 2 depicts, how a line profile through the scatter-
reduced volumes differs from the line profile through the
ground-truth volume. For the case where the scatter com-
ponents are based on Ip, the results for both methods only
differ slightly. Notably, there is an advantage for the ECC-
based parameter estimation in the frontal sinus area within
the phantom. This is due to a mandatory masking of soft-
and hard-tissue regions in the TV-based approach (see also
Fig. 1c) that eliminates contributions from regions with
low attenuation to the loss. For the case where the scatter
components are based on Iq , worse results can be seen in
both methods.

Finally, we compare the structure similarity (SSIM) and
peak signal noise ratio (PSNR) of the scatter-reduced slices.
The results are shown in Fig. 4. Regarding these measures,
the ECC-based parameter estimation is superior to the TV-
based approach in all cases.

IV. CONCLUSION

We have presented a novel reference-free scatter reduc-
tion algorithm and showed that it improves over a similar
algorithm in terms of achievable image quality and compu-
tational efficiency. Overall, the PSNR is about 35% better,
whereas the SSIM is also slightly better, compared to the
reference algorithm. The estimation of the weights with our
method happens to be 52 times faster using an unoptimized
numerical Python implementation.

A key advantage of using a consistency condition is, that
it does not impose any assumption about the object. We
reuse the scatter reduction model from Meyer et. al to obtain
a computationally efficient formulation of the optimization
problem on intermediate functions in line integral domain
with a closed-form solution. However, we show that this
mathematical model has disadvantageous physical proper-
ties. Still we found the algorithm works well in simulation
experiments, even if we restrict ourselves to a single iteration
of the algorithm. In future work we want to evaluate the
algorithm extensively on measured data. Additionally we
want to explore different scatter reduction models better
modeling the physical properties while preserving compu-
tational efficiency.
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