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Synopsis
This work demonstrates the successful application of Deep Learning with phantom and human measurements for the reconstruction in Magnetic Resonance Fingerprinting
(MRF). State-of-the-art MRF reconstruction yields quantitative maps of e.g. T  and T  by acquiring multiple undersampled images with various acquisition parameters,
commonly referred to as fingerprints. Every measured fingerprint (per voxel) is compared with a dictionary of simulated fingerprints for possible parameter combinations.
This time-consuming step can be replaced with a neural network, which directly predicts the parameters from a fingerprint. This was previously shown with simulated
data. Here, we extend this approach to real measurements.

Introduction
In Magnetic Resonance Fingerprinting (MRF), many strongly undersampled images with various
acquisition parameters like flip angle (FA) or repetition time (TR) are recorded in order to generate a so-
called fingerprint per voxel (Figure 1A), from which quantitative maps of e.g. T  and T relaxations can be
computed.  The state-of-the-art reconstruction is time-consuming, since it compares every fingerprint to
a dictionary of simulated fingerprints of possible parameter combinations to retrieve the best matching
entry.  Deep Learning (DL) can be used to reformulate the MRF reconstruction as a regression task with
the help of neural networks. Previous approaches used either fully-connected neural networks  or
Convolutional Neural Networks (CNNs).  The first method utilized a 25-point MRF EPI  pulse sequence,
which did not lead to undersampling artifacts such as ours (Figures 1A+B). The second approach showed
the applicability of a CNN similar to our prototype sequence with simulated data.  In this work, we extend
the second approach,  which directly predicts quantitative parameters from fingerprints. We train a CNN
on measured (phantom and human) fingerprints and show as a proof-of-concept that it offers accurate and
faster reconstruction despite the severly undersampled acquisition.

Methods
2D MRF data was acquired using Fast Imaging with Steady State Precession  on a MAGNETOM Skyra
3T (Siemens Healthcare, Erlangen, Germany) with a prototype sequence with the following parameters:
Field-of-View 300×300 mm , resolution 1.17×1.17×5 mm , variable TR (12-15 ms), FA (5-75°), number
of repetitions 3,000. We used the ISMRM/NIST phantom  as it provides a wide range of physiologically
relevant T  (20-2,000 ms) and T  (8-800 ms) values (Figure 1C). Additionally, transversal human brain
data was acquired from a 24-year-old female volunteer (Figure 1D). We created ground truth data for the
training by matching measurements with a dictionary simulated with the same prototype sequence and the
following parameters: T : 50-4,500 ms, T : 20-800 ms, B : 70-130%, overall about 131,000 simulated
fingerprints.

For the network architecture, convolutional layers in addition to fully-connected layers were used because
the fingerprint is expected to be correlated along the time dimension. Previous training with simulations
was a much easier task since no undersampling artifacts were considered. We now extend the previous
CNN architecture  to be able to cope with these strong undersampling effects (factor 48) and train it on our
measured data. The architecture of our CNN for the phantom (human) data consists of 4 (6) convolutional
layers, average pooling and 4 (6) fully-connected layers with Rectified Linear Units  as activation
functions (Figure 2). Data from 20 (6) phantom (human) measurements with 21,940 (110,670) signals
(Figure 1C+D) was used, separated randomly for training (90%) and validation (10%). We implemented
our method using the TensorFlow library.  The weights were initialized randomly.  For optimization we
used the ADAM method  (initial learning rate: 5·10 ) and minimized the mean squared error as a loss
function.
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Results
Testing was performed on a set of two independent phantom and human measurements. Results show a
small error compared to the ground truth MRF reconstruction  (mean error±standard deviation, phantom
(human): T : 11.3±11.5 ms (92±167 ms), T : 3.4±4.3 ms (19±44 ms), Figures 3+4). Deeper architectures
lead to better accuracy with measured fingerprints (Figure 5).

Execution time was compared on a 2.7 GHz Intel Core i5: While the state-of-the-art reconstruction
requires approximately 61 ms for one fingerprint with a dictionary of 10,098 T and T  combinations, the
CNN method can improve this by a factor of 10 (7) for phantom (human) data on the same hardware. We
can further accelerate this by a factor of ≈ 47 on a GeForce GTX 1080 GPU.

Discussion
Figures 1A+B show the substantially increased difficulty for a MRF reconstruction caused by the
undersampling artifacts arising from the accelerated acquisition scheme and other artifacts for human data
due to the living object of investigation compared to simulated fingerprints. We showed that our proposed
CNNs can cope with this added difficulty. This is possible due to the deeper architectures of our networks
compared to the previous one for simulated data.  In comparison to the previously proposed DL approach
without undersampling artifacts and with a coarser image resolution (2×2 mm , 128×128 matrix),  our
images (1.17×1.17 mm , 256×256 matrix) are clinically more relevant ones.

Conclusion
The CNN-based reconstruction has been shown to be applicable to real measured fingerprints of MRF
acquisitions with strong undersampling and to yield accurate predictions of quantitative parameter maps. It
further provides the advantages of reduced computational effort and predicted continuous values instead of
limited discrete parameters contained in the dictionary. Further work will focus on architectural and image
quality improvements for human data.
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Figures

Figure 1: Fingerprints from the used acquisition scheme and reconstructed quantitative maps with the
state-of-the-art MRF method

A+B: Exemplary measured fingerprint from a ISMRM/NIST phantom (blue) and the associated simulated
fingerprint from the dictionary (red, parameters: T : 240 ms, T : 160 ms). A: Whole signal (3,000 data
points), B: Enlarged excerpt from A to clarify the differences between simulated and measured
fingerprints.

C+D: Example of quantitative relaxation maps of one ISMRM/NIST (C) and one human (D)
measurement. Both T  maps, in units of ms.

 

Figure 2: Schema of our proposed CNNs, which directly predict quantitative parameters from a fingerprint,
instead of comparing it to a dictionary consisting of simulated fingerprints for every parameter
combination. The input layer consists of 3,000 neurons for the 3,000 data points from the measured
fingerprint (phantom or human), followed by 4 (phantom data) or 6 (human data) convolutional layers
(given in the following form: (kernel size-stride size per layer) (feature maps per layer) ), average pooling
(kernel size-stride size) and 4 (phantom data) or 6 (human data) fully-connected layers (number of neurons
per layer).
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Figure 3: Prediction results from the proposed CNN in Figure 2 for phantom data. A: T , B: T . First row:
Ground truth (state-of-the-art MRF reconstruction) quantitative relaxation maps (masked balls) in units of
ms. Second row: CNN-predicted quantitative relaxation maps (masked balls) in units of ms. Third row:
Ground truth versus predicted values. The dashed line is the x=y line, the solid line is the linear regression
(with its formula in the right corners). The results show, that our CNN was able to predict accurate
quantitative values from measured phantom fingerprints and yielded small errors compared to the ground
truth.

 

Figure 4: Prediction results from our proposed CNN in Figure 2 for human data. A: T , B: T . First row:
Ground truth (state-of-the-art MRF reconstruction) quantitative relaxation maps, in units of ms. Second
row: CNN-predicted quantitative relaxation maps, in units of ms. Third row: Absolute errors between
ground truth and CNN-predicted relaxation maps, in units of ms. The results show, that our CNN was able
to predict accurate quantitative T  and T  maps after training with human fingerprints, despite artifacts due
to undersampling or other factors, e.g. movements of the living object of investigation.

 

Figure 5: Results of predictions for one test ISMRM/NIST measurement (as in Figure 3) from a CNN with
an architecture consisting of 4 layers (3 convolutional layers, average pooling and 1 fully-connected layer)
as previously described for simulated data.  A: T , B: T , in units of ms. The dashed line is the x=y line,
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the solid line is the linear regression (with its formula in the right corners). The results show, that a deeper
architecture (compare to Figure 3, bottom row) was beneficial for predictions from measured fingerprints
with undersampling artifacts, as a smaller architecture led to reduced accuracy.
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